Antioxidant Activities, Phenolic Compounds and Organic Acids of Raw and Boiled Berries of Solanum Torvum Swartz From Eastern Côte d’Ivoire
DOI:
https://doi.org/10.22437/ifstj.v6i1.19229Keywords:
Solanum torvum berries; boiling; antioxidant capacities; phenolic compounds; organic acidsAbstract
Berries of solanum torvum, referred to as wild eggplant, are widely consumed in eastern Côte d'Ivoire in boiled form in sauces or soups. This study aimed to evaluate the antioxidant potential of these fruits through the estimation of antioxidant capacities of the extracts, identification and quantification of phenolic compounds and organic acids of raw berries and boiled berries to gauge the influence of this cooking. Results showed that boiling caused a considerable decrease in the antioxidant capacity of S. torvum berry extracts. By DPPH scavenging, the effective concentration (EC50) value of extract increased from 20.00 to 42.20 µg/mL, respectively for raw and boiled berries. Regarding EC50 values for antioxidant activities via FRAP, the values of 75.10 and 87.20 µg/mL were obtained, respectively for raw and boiled berries extract. In terms of phenolic compounds, the most predominant were catechin and gallic acid with respective contents of 1.06 and 0.86 mg/kg in the raw berries; 0.86 and 0.71 mg/kg in boiled berries, demonstrating the decrease in levels of these compounds by boiling. Organic acids showed the same decreasing trend during boiling. However, using cooking water when preparing soups or sauces could minimize these losses. In addition to this, one could consider other cooking methods such as steaming to better ensure nutrient retentionDownloads
References
Adjanohoun, J.E., Aboubakar, N., Dramane, K., Ebot, M.E., Ekpere, J.A., Enoworock, E.G., Foncho, D., Gbile, Z.O., Kamanyi, A., Kamoukom Jr., Keeta, A., Mbenkum, T., Mbi, C.M., Mbielle, A.L., Mbome, I.L., Mubiru, N.K., Naney, W.L., Nkongmeneck, B., Satabie, B., Sofowa, A., Tanze, V. & Wirmum, C.K. (1996). Traditional medicine and pharmacopoeia-contribution to ethnobotanical and floristic studies in Cameroon. In: CNPMS. Porto-Novo, Benin, pp. 50-52
Mohan M. & Bhandare S. (2012). Protective effect of solanum torvum against testicular toxicity in male wistar rats. International Journal of Pharmacy and Pharmaceutical Sciences 4(2): 188-192
https://innovareacademics.in/journal/ijpps
Gandhi G.R., Ignacimuthu S. & Paulraj M.G. (2011) Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food and Chemical Toxicology 49: 2725–2733. DOI: 10.1016/j.fct.2011.08.005
Asiedu-Darko E.A. (2011). Survey of indigenous knowledge about food and medicinal properties of Solanum torvum in East Akim District of Eastern Region of Ghana, Ghana Journal of Agricultural Science 43: 61-64.
Waghulde H, Kamble S, Patankar P, Jaiswal BS, Pattanayak S, Bhagat C, Mohan M. (2011). Antioxidant activity, phenol and flavonoid contents of seeds of Punica Granatum
(Punicaceae) and Solanum torvum (Solanaceae). Pharmacolgyonline. 1:193-202.
Yousaf Z, Wang Y, Baydoun E. (2013). Phytochemistry and pharmacological studies on Solanum torvum Swartz. Journal of Applied Pharmaceutical Science 3(4): 152-160
Nguta J.M., Appiah-Opong R, Nyarko A.K., Yeboah-Manu D. & Addo P.G.A. (2015). Medicinal plants used to treat TB in Ghana. International Journal of Mycobacteriology 4: 116-123
http://dx.doi.org/10.1016/j.ijmyco.2015.02.003
Wannasiri S., Chansakaow S. & Sireeratawong S. (2017). Effects of Solanum torvum fruit water extract on hyperlipidemia and sex hormones in high-fat fed male rats. Asian Pacific Journal of Tropical Biomedicine 7(5): 401-405 http://dx.doi.org/10.1016/j.apjtb.2017.01.027
Obiang C.S., Ngoua Meye Misso R.L, Ndong Atome G.R., Ondo J.P., Obame Engonga L.C. & Emvo E.N. (2019).Phytochemical analyses, antimicrobial and antioxidant activities of stem bark extracts of Distemonanthus benthamianus H. Baill. and fruit extracts of Solanum torvum Sw. from Gabon. Asian Pacific Journal of Tropical Biomedicine 9: 209-216DOI: 10.4103/2221-1691.259001
Okou O.C., Yapo S.E-C., Kouassi K.C., Komenan N.R. MonthauT S.V. Kra A.K.M. & Djaman A.J. (2019). Evaluation of the antibacterial activity of fruit extracts of Solanum torvum Swartz (Solanaceae) on the in vitro growth of seven (07) enterobacteria strains of different profiles (resistant or susceptible). International Journal of Biological and Chemical Sciences 13(3): 1510-1526 (In French) DOI: 10.4314/ijbcs.v13i3.24
Darkwah W.K., Koomson D.A., Miwornunyuie N., Nkoom M. & Puplampu J.B. (2020) Review: phytochemistry and medicinal properties of Solanum torvum fruits. All Life 13(1): 498-506
DOI: 10.1080/26895293.2020.1817799
Akoto O., Borquaye L.S., Howard A.M. & Konwuruk N. (2015). Nutritional and Mineral Composition of the Fruits of Solanum torvum from Ghana. International Journal of Chemical and Biomolecular Science 1(4): 222-226
Elizalde-Romero C.A., Montoya-Inzunza L.A., Contreras-Angulo L.A., Heredia J.B. & Gutiérrez-Grijalva E.P. (2021). Solanum Fruits: Phytochemicals, Bioaccessibility and Bioavailability, and Their Relationship With Their Health-Promoting Effects. Frontiers in Nutrition 8:790582. DOI: 10.3389/fnut.2021.790582
Kouadio K., Adingra K.M-D., Kouadio M., Disseka W.K. Gbotognon O.J. & Kouadio E.J.P. (2020). Proximate Composition and Phytochemical Properties of Fresh and Boiled Solanum torvum Consumed in East of Côte d’Ivoire. Asian Food Science Journal 18(2): 31-40
Nadeeshani H., Samarasinghe G., Wimalasiri S., Silva R., Hunter D. & Madhujith T. (2021). Comparative analysis of the nutritional profiles of selected Solanum species grown in Sri Lanka. Journal of Food Composition and Analysis 99: 103847 DOI: https://doi.org/10.1016/j.jfca.2021.103847
Namani S., Paripelli S., Chinni S.V., Kasi M., Subramaniam S. & Rathinam X. (2016). Pharmaceutical Research In vitro Anti-oxidant Assay, HPLC Profiling of Polyphenolic Compounds, AAS and FTIR Spectrum of Malaysian Origin Solanum torvum Fruit. Indian Journal of Pharmaceutical Education 50(2): S11-S20 DOI:10.5530/ijper.50.2.13
Ve I.C., Nagarajaperumal G. & Mohan S. (2018). Phytochemicals detection, antioxidant and antimicrobial activity study on berries of Solanum torvum . Asian journal of Pharmaceutical and Clinical Research 11(11): 418-423. DOI: 10.22159/ajpcr.2018.v11i11.28752
Hatano T., Kagawa H., Yasuhara T. & Okuda T.T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging affects. Chemical and Pharmaceutical Bulletin 36(6), 2090-2097 DOI: 10.1248/cpb.36.2090
Ferreira I.C.F.R., Baptista P., Vilas-Boas M. & Barros L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chemistry 100(4), 1511-1516 https://doi.org/10.1016/j.foodchem.2005.11.043
Hasib A., Jaouad A., Mahrouz M. & Khouili M. (2002). HPLC determination of organic acids in Moroccan apricot. Ciência e Tecnologia de Alimentos 3: 207-211. DOI: 10.1080/11358120209487729
Naveena N., Vishnuvardhana Rao A. & Bhaskarachary K. (2016). Effect of Boiling and Juicing on the Content of Polyphenols, In vitro Bioaccessibility and Antioxidant Activity of Commonly Consumed Vegetables and Fruits. The Indian Journal of Nutrition and Dietetics 53 (4): 265-379
https://doi.org/10.21048/ijnd.2016.53.4.8396
Hossain S.J., Pervin T. & Suma S.A. (2016). Effects of cooking methods at different time durations on total phenolics and antioxidant activities of fresh and dried-stored fruits of Sonneratia apetala (Buch.-Ham.). International Food Research Journal 23(2): 556-563
Preti R., Rapa M. & Vinci G. (2017). Effect of Steaming and Boiling on the Antioxidant Properties and Biogenic Amines Content in Green Bean (Phaseolus vulgaris) Varieties of Different Colours. Journal of Food Quality 2017: 5329070 https://doi.org/10.1155/2017/5329070
Vinha A.F., Alves R.C., Barreira S.V.P., Anabela S.G. Costa A.S.G. & Oliveira M.B.P.P. (2015). Impact of boiling on phytochemicals and antioxidant activity of green vegetables consumed in the Mediterranean diet. Food & Function 6(4): 1157-1163 DOI: 10.1039/c4fo01209g
Azizah A.H., Wee K.C., Azizah O. & Azizah M. (2009). Effect of boiling and stir frying on total phenolics, carotenoids and radical scavenging activity of pumpkin (Cucurbita moschato). International Food Research Journal 16: 45-51
Turkmen N., Ferda Sari F. & Velioglu Y.S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry 93(4):713-718
https://doi.org/10.1016/j.foodchem.2004.12.038
Kettawan A., Chanlekha K., Kongkachuichai R. & Charoensiri R. (2011). Effect of cooking on antioxidant activities and polyphenol content of edible mushrooms commonly consumed in Thailand. Pakistan Journal of Nutrition 10(11): 1094-1103 DOI:10.3923/pjn.2011.1094.1103
PADMINI T., Karpagavalli B., Vijayalakshmi R. & Jesupriya Poornakala S. (2015). Effect of cooking methods on antioxidant properties of vegetables. International Journal of Current Research 7(12): 23466-23470
Afful N.T., Nyadanu D., Akromah R., Amoatey H.M., Annor C. & Diawuoh R.G. (2019). Nutritional and antioxidant composition of eggplant accessions in Ghana. African Crop Science Journal 27(2): 193-211
DOI: https://dx.doi.org/10.4314/acsj.v27i2.6
Ramamurthy C.H., Kumar M.S., Suyavaran V.S.A., Mareeswaran R. & Thirunavukkarasu C. (2012). Evaluation of Antioxidant, Radical Scavenging Activity and Polyphenolics Profile in Solanum torvum L. Fruits. Journal of Food Science 77(8): C907-C913 https://doi.org/10.1111/j.1750-3841.2012.02830.x
Choirunnisa A.R., Fidrianny I. & Ruslan K. (2016). Comparison of five antioxidant assays for estimating antioxidant capacity from three Solanum sp. extracts. Asian Journal of Pharmaceutical and Clinical Research 9(Suppl 2):123-128. DOI: 10.22159/ajpcr.2016.v9s2.13155
Akanitapichat P. & Sethabouppha B. (2020). In Vitro Antioxidant and Cytoprotective Activities of Extracts from Four Solanum Fruits. Isan Journal of Pharmaceutical Sciences 16(1): 49-58
DOI: https://doi.org/10.14456/ijps.2020.5
Arias-Rico J., MacÃas-León F.J., AlanÃs-GarcÃa E., Cruz- Cansino N.S., Jaramillo-Morales O.A., Barrera-Gálvez R. & RamÃrez-Moreno E. (2020). Study of edible plants: Effects of boiling on nutritional, antioxidant, and physicochemical properties. Foods 9: 1-14. https://doi.org/10.3390/foods9050599
Nicoli M. C., Anese M. & Parpinel M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science & Technology 10(3): 94-100
https://doi.org/10.1016/S0924-2244(99)00023-0
Kao F.-J., Chiu Y.-S. & Chiang W.-D. (2014). Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan. Journal of Food and Drug Analysis 22(2): 202-209
https://doi.org/10.1016/j.jfda.2013.09.010
Miglio C., Chiavaro, E., Visconti A., Fogliano V.; Pellegrini N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry 56: 139-147 DOI: 10.1021/jf072304b
Jiménez-Monreal A.M. , GarcÃa-Diz L., MartÃnez-Tomé M., Mariscal M. & Murcia M. A. (2009). Influence of cooking methods on antioxidant activity of vegetables. Journal of Food Science 74(3): H97-H103
https://doi.org/10.1111/j.1750-3841.2009.01091.x
Sultana B., Anwar F. & Iqbal S (2008). Effect of different cooking methods on the antioxidant activity of some vegetables from Pakistan. International Journal of Food Science & Technology 43(3): 560-567
https://doi.org/10.1111/j.1365-2621.2006.01504.x
Mazzeo T., N’Dri D., Chiavaro E., Visconti A., Fogliano V. & Pellegrini N. (2011). Effect of two cooking procedures on phytochemical compounds, total antioxidant capacity and colour of selected frozen vegetables. Food Chemistry 128: 627-633 DOI:10.1016/j.foodchem.2011.03.070
Sun H., Mu T., Xi L., Song Z. (2014). Effects of Domestic Cooking Methods on Polyphenols and Antioxidant Activity of Sweet Potato Leaves. Journal of Agricultural and Food Chemistry 62(36): 8982–8989 DOI: 10.1021/jf502328d
Haminiuk C.W., Maciel G.M., Plata-Oviedo M.S.V. & Peralta, R.M. (2012). Phenolic compounds in fruits - an overview. International Journal Food Science and Technology 47: 2023-2044
https://doi.org/10.1111/j.1365-2621.2012.03067.x
IlyasoÄŸlu H. & Burnaz N.A. (2015). Effect of Domestic Cooking Methods on Antioxidant Capacity of Fresh and Frozen Kale, International Journal of Food Properties 18(6): 1298-1305
DOI: 10.1080/10942912.2014.919317
Aruoma O.I., Murcia A., Butler J. & Halliwell B. (1993). Evaluation of the Antioxidant and Prooxidant Actions of Gallic Acid and Its Derivatives. Journal of Agricultural and Food Chemistry 41 (11): 1880–1885
https://doi.org/10.1021/jf00035a014
Pekkarinen S.S., Heinonen I.M. & Hopia A.I. (1999). Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. Journal of the Science of Food and Agriculture 79: 499-506
https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<499:AID-JSFA204>3.0.CO;2-U
Yapo S.E.-S., Okou O.C., Gogbeu S.J. Kouakou T.H. & Waffo T.P. (2019). Qualitative characterization of phenolic profile of the fruits and leaves of Solanum torvum Swart naturally growing in Côte d’Ivoire. International Journal of Agronomy and Agricultural Research 15(4): 1-9
Medina-Medrano J.R., Mares-Quiñones M.D., Valiente-Banuet J.I. Vázquez-Sánchez M. Ãlvarez-Bernal D. & Edgar Villar-Luna M. (2017). Determination and quantification of phenolic compounds in methanolic extracts of Solanum ferrugineum (Solanaceae) fruits by HPLC-DAD and HPLC/ESI-MS/TOF, Journal of Liquid Chromatography & Related Technologies 40(17): 900-906à¸DOI: 10.1080/10826076.2017.138237
Olsson M.E., Gustavsson K.E., Andersson S., Nilsson A. & Duan R.D. (2004). Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. Journal of Agricultural and Food Chemistry 52: 7264-7271 DOI: 10.1021/jf030479p
Pincemail J, Kevers C., Tabart J., Defraigne J.-O. & Dommes J. (2012). Cultivars, Culture Conditions, and Harvest Time Influence Phenolic and Ascorbic Acid Contents and Antioxidant Capacity of Strawberry (Fragaria x ananassa). Food Science 77(2): C205-C210 https://doi.org/10.1111/j.1750-3841.2011.02539.x
Gündüz K. & Özdemir E. (2014). The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chemistry 155: 298-303
DOI: 10.1016/j.foodchem.2014.01.064
Tsamo C.V.P., Herent M.-F., Tomekpe K. Emaga T.H., Quetin-Leclercq J, Rogez H., Larondelle Y. & Andre C. (2015). Phenolic profiling in the pulp and peel of nine plantain cultivars (Musa sp.). Food Chemistry 167: 197-204 DOI:10.1016/j.foodchem.2014.06.095
Cortez-GarcÃa R.M., Ortiz-Moreno A.O., Zepeda-Vallejo L.G. & Necoechea-Mondragón H. (2015). Effects of Cooking Methods on Phenolic Compounds in Xoconostle (Opuntia joconostle). Plant Foods for Human Nutrition 70: 85-90à¸DOI 10.1007/s11130-014-0465-2
Khosravi F., Rastakhiz N., Iranmanesh B. & Jafari Olia S. S. S. (2015). Determination of Organic Acids in Fruit juices by UPLC. International Journal of Life Sciences 9(5): 41-44à¸DOI: 10.3126/ijls.v9i5.12690
Ergönül P.G. & Nergiz C. (2010). Determination of organic acids in olive fruit by HPLC. Czech Journal of Food Sciences, 28: 202–205à¸https://doi.org/10.17221/1379-CJFS
Kouassi K.A., Kouadio E.J.P., Djè K.M., Dué A.E. & Kouamé L. P. 2016. Edible Ectomycorrhizal Mushrooms Russula spp. of Côte d’Ivoire: Total Phenolic Content, HPLC-Profiles of Phenolic Compounds and Organic Acids, Antioxidant Activities. Journal of Agricultural Chemistry and Environment 5: 73-84
DOI: 10.4236/jacen.2016.52008
Armesto J., Gómez-Limia L., Carballo J. & MartÃnez S. (2018). Effects of different cooking methods on the antioxidant capacity and flavonoid, organic acid and mineral contents of Galega Kale (Brassica oleracea var. acephala cv. Galega), International Journal of Food Sciences and Nutrition 70(2):1-14
DOI: 10.1080/09637486.2018.1482530
Silva B.M. · Andrade P.B., Gonçalves A.C., Seabra ·R.M., Oliveira M.B & Ferreira M.A. (2004). Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). European Food Research and Technology 218:385–389 DOI 10.1007/s00217-003-0845-6
Ribeiro B., Valentão P., Baptista P., Seabra R.M. & Andrade P.B. (2007). Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology 45: 1805-1813 DOI: 10.1016/j.fct.2007.03.015
GarcÃa-Herrera P., Morales P., Cámara M., Fernández-Ruiz V., TardÃo J. & Sánchez-Mata M.C. (2020). Nutritional and Phytochemical Composition of MediterraneanWild Vegetables after Culinary Treatment. Foods 9: 1761 DOI: 10.3390/foods9121761
Ribeiro B., Andrade P.B., Baptista P., Barros L., Ferreira I.C.F.R., Seabra R.M. & Valentão P. (2008). Leucopaxillus giganteus mycelium: Effect of nitrogen source on organic acids and alkaloids. Journal of Agricultural and Food Chemistry 56:4769-4774 DOI: 10.1021/jf8001526
Inić S., Ljepović M. Domijan A.-M., Srdarević S.S., Jasna Jablan J. & Markov K. (2020). HPLC Analysis of Citric and Tartaric Acids in Fruit Nectars and Juices. Croatica Chemica. Acta 93(1): 57-62
https://doi.org/10.5562/cca3662
Swain M.R., Anandharaj M., Ray R.C. & Rani R.P. (2014). Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnology Research International 2014: 250424
DOI: 10.1155/2014/250424
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Indonesian Food Science and Technology Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.