COMPARATIVE ANALYSIS OF STATE-OF-THE-ART CLASSIFIERS FOR PARKINSON'S DISEASE DIAGNOSIS

Authors

DOI:

https://doi.org/10.22437/jiituj.v8i2.32771

Keywords:

Artificial Intelligence, Machine Learning, Parkinson’s Disease, Gradient Boosting, XGBoost

Abstract

Parkinson's disease (PD) presents a growing global health challenge, with early detection being crucial for effective management and treatment. This study seeks to develop an innovative machine learning (ML) framework for the early detection of PD by integrating advanced techniques for data preprocessing, dimensionality reduction, feature selection, and ensemble classification, aiming to significantly improve detection accuracy and timeliness. The research employs a robust ML pipeline, beginning with data preprocessing using mean imputation, standardization, min-max scaling, and SMOTE (Synthetic Minority Over-sampling Technique) to handle imbalanced data. Dimensionality reduction is achieved through Principal Component Analysis (PCA), while feature selection is performed using SelectKBest coupled with the ANOVA F-test to identify the most relevant features. Four ensemble methods—Random Forest, Gradient Boosting, XGBoost, and Support Vector Machine (SVM)—are evaluated for classification. Among the classifiers tested, the Gradient Boosting model stands out with an impressive accuracy of 0.9487, demonstrating its superior performance in PD detection. Integrating multiple preprocessing, dimensionality reduction, and feature selection techniques proves essential in optimizing model performance, highlighting the importance of a multifaceted approach in handling complex datasets. This research introduces a comprehensive ML framework that combines multiple advanced techniques in a streamlined process, significantly improving the early detection of Parkinson's disease. Ensemble methods, combined with strategic feature selection and data balancing techniques, offer a novel approach that could be applied to other neurodegenerative disorders, expanding its potential impact beyond PD detection.

Downloads

Download data is not yet available.

References

Abdulqadir, H. R., Abdulazeez, A. M., & Zebari, D. A. (2021). Data mining classification techniques for diabetes prediction. Qubahan Academic Journal, 1(2), 125-133. https://doi.org/10.48161/qaj.v1n2a55.

Aighuraibawi, A. H. B., Manickam, S., Abdullah, R., Alyasseri, Z. A. A., Al-Ani, A. K. I., Zebari, D. A., ... & Arif, Z. H. (2023). Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm. Comput. Syst. Sci. Eng., 47(1), 553-574. https://doi.org/10.32604/csse.2023.037948.

Alalayah, K. M., Senan, E. M., Atlam, H. F., Ahmed, I. A., & Shatnawi, H. S. A. (2023). Automatic and early detection of Parkinson’s disease by analyzing acoustic signals using classification algorithms based on recursive feature elimination method. Diagnostics, 13(11), 1924. https://doi.org/10.3390/diagnostics13111924.

Ali, A. M., Salim, F., & Saeed, F. (2023). Parkinson’s disease detection using filter feature selection and a genetic algorithm with ensemble learning. Diagnostics, 13(17), 2816. https://doi.org/10.3390/diagnostics13172816.

Asmororini, E., Kinda, J., & Sen, B. (2024). Innovation Learning Geography with ArcGIS Online: The Impact to Skills Collaborative and Achievement Student School Upper Intermediate. Journal of Educational Technology and Learning Creativity, 2(1), 1-12. https://doi.org/10.37251/jetlc.v2i1.969

Asrial, A., Syahrial, S., Kurniawan, D. A., Putri, F. I., Perdana, R., Rahmi, R., Susbiyanto, S., & Aldila, F. T. (2024). E-Assessment for Character Evaluation in Elementary Schools. Qubahan Academic Journal, 4(3), 806-822. https://doi.org/10.48161/qaj.v4n3a595.

Attia, Z. I., Noseworthy, P. A., Lopez-Jimenez, F., Asirvatham, S. J., Deshmukh, A. J., Gersh, B. J., ... & Friedman, P. A. (2019). An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. The Lancet, 394(10201), 861-867. https://doi.org/10.1016/S0140-6736(19)31721-0.

Brown, D., Smeets, D., Székely, B., Larsimont, D., Szász, A. M., Adnet, P. Y., ... & Desmedt, C. (2017). Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nature communications, 8(1), 14944. https://doi.org/10.1038/ncomms14944.

Chalo, S., & Aydilek, I. B. (2022). A New Preprocessing Method for Diabetes and Biomedical Data Classification. Qubahan Academic Journal, 2(4), 6-18. https://doi.org/10.48161/qaj.v2n4a135.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. https://doi.org/10.1613/jair.953.

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). https://doi.org/10.1145/2939672.2939785.

Chicho, B. T., Abdulazeez, A. M., Zeebaree, D. Q., & Zebari, D. A. (2021). Machine learning classifiers based classification for IRIS recognition. Qubahan Academic Journal, 1(2), 106-118. https://doi.org/10.48161/qaj.v1n2a48.

Davoudi, S., Ahmadi, A., & Daliri, M. R. (2021). Frequency–amplitude coupling: a new approach for decoding of attended features in covert visual attention task. Neural Computing and Applications, 33, 3487-3502. https://doi.org/10.1007/s00521-020-05222-w.

Dixit, S., Bohre, K., Singh, Y., Himeur, Y., Mansoor, W., Atalla, S., & Srinivasan, K. (2023). A Comprehensive review on AI-enabled models for Parkinson’s disease diagnosis. Electronics, 12(4), 783. https://doi.org/10.3390/electronics12040783.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056.

Fitriana, H., & Waswa, A. N. (2024). The influence of a realistic mathematics education approach on students’ mathematical problem solving ability. Interval: Indonesian Journal of Mathematical Education, 2(1), 29-35. https://doi.org/10.37251/ijome.v2i1.979.

Govindu, A., & Palwe, S. (2023). Early detection of Parkinson's disease using machine learning. Procedia Computer Science, 218, 249-261. https://doi.org/10.1016/j.procs.2023.01.007.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. jama, 316(22), 2402-2410. https://doi.org/10.1001/jama.2016.17216.

Gunawardana, A., Arooz, F., Peramunugamage, A., & Halwatura, R. (2020). Critical analysis of lecturer’s perception on integrating concepts of sustainability in university curricular. Integrated Science Education Journal, 1(3), 109-121. https://doi.org/10.37251/isej.v1i3.105.

Habibi, M. W., Jiyane, L., & Ozsen, Z. (2024). Learning Revolution: The Positive Impact of Computer Simulations on Science Achievement in Madrasah Ibtidaiyah. Journal of Educational Technology and Learning Creativity, 2(1), 13-19. https://doi.org/10.37251/jetlc.v2i1.976.

Hindocha, S., Charlton, T. G., Linton-Reid, K., Hunter, B., Chan, C., Ahmed, M., ... & Aboagye, E. O. (2022). A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models. EBioMedicine, 77. https://doi.org/10.1016/j.ebiom.2022.103911.

Hossein Tabatabaei, S. A., Pedrosa, D., Eggers, C., Wullstein, M., Kleinholdermann, U., Fischer, P., & Sohrabi, K. (2020). Machine learning techniques for Parkinson’s disease detection using wearables during a timed-up-and-go-test. Current Directions in Biomedical Engineering, 6(3), 376-379. https://doi.org/10.1515/cdbme-2020-3097.

Kusuma, R. S. (2020). Improving students’ basic asking skills by using the discovery learning model. Tekno - Pedagogi : Jurnal Teknologi Pendidikan, 10(2), 8-13. https://doi.org/10.22437/teknopedagogi.v10i2.32743.

Li, D., Deogun, J., Spaulding, W., & Shuart, B. (2004). Towards missing data imputation: a study of fuzzy k-means clustering method. In Rough Sets and Current Trends in Computing: 4th International Conference, RSCTC 2004, Uppsala, Sweden, June 1-5, 2004. Proceedings 4 (pp. 573-579). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_70.

Marmion, D. J., & Kordower, J. H. (2018). Alpha-Synuclein nonhuman primate models of Parkinson’s disease. Journal of Neural Transmission, 125, 385-400. https://doi.org/10.1007/s00702-017-1720-0.

Mohanti, R. R. (2021). Parkinson’s XYZ data. https://www.kaggle.com/datasets/guywhowantstolearnml/parkinsonsxyz (accessed Aug. 22, 2023).

Noor, M. B. T., Zenia, N. Z., Kaiser, M. S., Mamun, S. A., & Mahmud, M. (2020). Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain informatics, 7, 1-21. https://doi.org/10.1186/s40708-020-00112-2.

Park, Y. H., Suh, J. H., Kim, Y. W., Kang, D. R., Shin, J., Yang, S. N., & Yoon, S. Y. (2022). Machine learning based risk prediction for Parkinson's disease with nationwide health screening data. Scientific Reports, 12(1), 19499. https://doi.org/10.1038/s41598-022-24105-9.

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ digital medicine, 1(1), 1-10. https://doi.org/10.1038/s41746-018-0029-1.

Rehman, A., Saba, T., Mujahid, M., Alamri, F. S., & ElHakim, N. (2023). Parkinson’s disease detection using hybrid LSTM-GRU deep learning model. Electronics, 12(13), 2856. https://doi.org/10.3390/electronics12132856.

Sanchez-Hernandez, S. E., Salido-Ruiz, R. A., Torres-Ramos, S., & Roman-Godínez, I. (2022). Evaluation of feature selection methods for classification of epileptic seizure EEG signals. Sensors, 22(8), 3066. https://doi.org/10.3390/s22083066.

Santos, J., Pallarès, I., & Ventura, S. (2022). Is a cure for Parkinson’s disease hiding inside us?. Trends in Biochemical Sciences, 47(8), 641-644. https://doi.org/10.1016/j.tibs.2022.02.001.

Sari, R., Omeiza, I. I., & Mwakifuna, M. A. (2023). The influence of number dice games in improving early childhood mathematical logic in early childhood education. Interval: Indonesian Journal of Mathematical Education, 1(2), 61-66. https://doi.org/10.37251/ijome.v1i2.776.

Sayed, M. A., Cao, D. M., Islam, M. T., Tayaba, M., Pavel, M. E. U. I., Mia, M. T., ... & Sarkar, M. (2023). Parkinson's Disease Detection through Vocal Biomarkers and Advanced Machine Learning Algorithms. Journal of computer science and technology studies, 5(4), 142-149. https://doi.org/10.32996/jcsts.2023.5.4.14.

Schrag, A., & Schott, J. M. (2006). Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. The Lancet Neurology, 5(4), 355-363. https://doi.org/10.1016/S1474-4422(06)70411-2.

Shafiq, S., Ahmed, S., Kaiser, M. S., Mahmud, M., Hossain, M. S., & Andersson, K. (2022). Comprehensive Analysis of Nature-Inspired Algorithms for Parkinson’s Disease Diagnosis. IEEE Access, 11, 1629-1653. http://dx.doi.org/10.1109/ACCESS.2022.3232292.

Siddiqui, N. S., Klein, A., Godara, A., Buchsbaum, R. J., & Hughes, M. C. (2022). Predicting in-hospital mortality after acute myeloid leukemia therapy: through supervised machine learning algorithms. JCO Clinical Cancer Informatics, 6, e2200044. https://doi.org/10.1200/CCI.22.00044.

Singh, N., Pillay, V., & Choonara, Y. E. (2007). Advances in the treatment of Parkinson's disease. Progress in neurobiology, 81(1), 29-44. https://doi.org/10.1016/j.pneurobio.2006.11.009.

Suwarni, R. (2021). Analysis the process of observing class iv students in thematic learning in primary schools. Tekno - Pedagogi : Jurnal Teknologi Pendidikan, 11(1), 26-32. https://doi.org/10.22437/teknopedagogi.v11i1.32717.

Taher, K. I., Abdulazeez, A. M., & Zebari, D. A. (2021). Data mining classification algorithms for analyzing soil data. Asian Journal of Research in Computer Science, 8(2), 17-28. https://doi.org/10.9734/ajrcos/2021/v8i230196.

Ulandari, T., Ferry, D., & Damni, A. (2024). Symbiotic enlightenment: Exploring the fascination of biology education students with religion studies in an academic tapestry. Integrated Science Education Journal, 5(3), 168-180. https://doi.org/10.37251/isej.v5i3.1122.

Yohanie, D. D., Botchway, G. A., Nkhwalume, A. A., & Arrazaki, M. (2023). Thinking process of mathematics education students in problem solving proof. Interval: Indonesian Journal of Mathematical Education, 1(1), 24-29. https://doi.org/10.37251/ijome.v1i1.611.

Zakiyah, Z., Boonma, K., & Collado, R. (2024). Physics learning innovation: Song and animation-based media as a learning solution for mirrors and lenses for junior high school students. Journal of Educational Technology and Learning Creativity, 2(2), 54-62. https://doi.org/10.37251/jetlc.v2i2.1062.

Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., & Saeed, J. (2020). A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. Journal of Applied Science and Technology Trends, 1(1), 56-70. https://doi.org/10.38094/jastt1224.

Downloads

Published

2024-09-23

How to Cite

Hani, A. A., Sallow, A. B., Ahmad, H. B., Abdulrahman, S. M., Asaad, R. R., Zeebaree, S. R. M., & Majeed, D. A. (2024). COMPARATIVE ANALYSIS OF STATE-OF-THE-ART CLASSIFIERS FOR PARKINSON’S DISEASE DIAGNOSIS. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(2), 409-423. https://doi.org/10.22437/jiituj.v8i2.32771

Most read articles by the same author(s)