INTELLIGENT HOME IOT DEVICES: AN EXPLORATION OF MACHINE LEARNING-BASED NETWORKED TRAFFIC INVESTIGATION

Authors

DOI:

https://doi.org/10.22437/jiituj.v8i1.32767

Keywords:

IoT device classification, Machine Learning, Network Traffic Analysis, Smart Home

Abstract

In the rapidly evolving landscape of smart homes powered by Internet of Things (IoT) devices, the twin specters of safety and privacy loom large, exacerbated by pervasive security vulnerabilities. Confronted with a heterogeneous array of devices each with unique Value of Service (QoS) requirements, devising a singular network management strategy proves untenable. To mitigate these risks, device categorization emerges as a promising avenue, wherein rogue or vulnerable devices are identified and network operations are automated based on device type or function. This novel approach not only fortifies IoT security but also streamlines network management, offering a multifaceted solution to the burgeoning challenges. Recognizing the burgeoning interest in leveraging machine learning for traffic analysis in IoT environments, this study delves deep into the potential and pitfalls of such techniques. Beginning with a comprehensive framework for categorizing IoT devices, the research meticulously examines methodologies and remedies across every stage of the workflow. Key focal points include the categorization of public datasets, nuanced analysis of IoT traffic data collection methodologies, and the exploration of feature extraction techniques. Through a rigorous evaluation of machine learning algorithms for IoT device classification, the study elucidates emerging trends and highlights promising avenues for future exploration. The culmination of this investigation manifests in meticulously crafted taxonomies, offering insights into prevailing patterns and informing future research trajectories. Moreover, the study identifies and advocates for uncharted territories within this burgeoning domain, propelling the discourse forward and catalyzing innovation in IoT security and management.

Downloads

Download data is not yet available.

References

Abdulqadir, H. R., Zeebaree, S. R., Shukur, H. M., Sadeeq, M. M., Salim, B. W., Salih, A. A., & Kak, S. F. (2021). A study of moving from cloud computing to fog computing. Qubahan Academic Journal, 1(2), 60-70. https://doi.org/10.48161/qaj.v1n2a49

Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Yahia, H. S., Mahmood, M. R., & Ibrahim, I. M. (2021). Comprehensive survey of big data mining approaches in cloud systems. Qubahan Academic Journal, 1(2), 29-38. https://doi.org/10.48161/qaj.v1n2a46

Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Rashid, Z. N., Salih, A. A., & Abdullah, W. M. (2021). A survey of data mining implementation in smart city applications. Qubahan Academic Journal, 1(2), 91-99. https://doi.org/10.48161/qaj.v1n2a52

Alrawi, O., Lever, C., Antonakakis, M., & Monrose, F. (2019, May). Sok: Security evaluation of home-based iot deployments. In 2019 IEEE symposium on security and privacy (sp) (pp. 1362-1380). IEEE.

Almufti, S. M., Marqas, R. B., Nayef, Z. A., & Mohamed, T. S. (2021). Real time face-mask detection with arduino to prevent covid-19 Spreading. Qubahan Academic Journal, 1(2), 39-46. https://doi.org/10.48161/qaj.v1n2a47

Asaad, R. R. (2021). Review on Deep Learning and Neural Network Implementation for Emotions Recognition. Qubahan Academic Journal, 1(1), 1-4. https://doi.org/10.48161/qaj.v1n1a25

Asaad, R. R., & Abdulhakim, R. M. (2021). The Concept of Data Mining and Knowledge Extraction Techniques. Qubahan Academic Journal, 1(2), 17-20. https://doi.org/10.48161/qaj.v1n2a43

Cvitic, I., Perakovic, D., Perisa, M., & Gupta, B. (2021). Ensemble machine learning approach for classification of IoT devices in smart home. International Journal of Machine Learning and Cybernetics, 12(11), 3179-3202.

Dong, S., Li, Z., Tang, D., Chen, J., Sun, M., & Zhang, K. (2020, October). Your smart home can't keep a secret: Towards automated fingerprinting of iot traffic. In Proceedings of the 15th ACM Asia Conference on Computer and Communications Security (pp. 47-59).

Hafeez, I., Antikainen, M., & Tarkoma, S. (2019, March). Protecting IoT-environments against traffic analysis attacks with traffic morphing. In 2019 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops) (pp. 196-201). IEEE.

Lueth, K. L., Hasan, M., Sinha, S., Annaswamy, S., Wegner, P., Bruegge, F., & Kulezak, M. (2022). State of IoT—spring 2022. IoT Analytics market report.

Ma, X., Qu, J., Li, J., Lui, J. C., Li, Z., & Guan, X. (2020, July). Pinpointing hidden IoT devices via spatial-temporal traffic fingerprinting. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 894-903). IEEE.

Ma, X., Qu, J., Li, J., Lui, J. C., Li, Z., Liu, W., & Guan, X. (2021). Inferring hidden iot devices and user interactions via spatial-temporal traffic fingerprinting. IEEE/ACM Transactions on Networking, 30(1), 394-408.

Marchal, S., Miettinen, M., Nguyen, T. D., Sadeghi, A. R., & Asokan, N. (2019). Audi: Toward autonomous iot device-type identification using periodic communication. IEEE Journal on Selected Areas in Communications, 37(6), 1402-1412.

Maulud, D. H., Zeebaree, S. R., Jacksi, K., Sadeeq, M. A. M., & Sharif, K. H. (2021). State of art for semantic analysis of natural language processing. Qubahan academic journal, 1(2), 21-28. https://doi.org/10.48161/qaj.v1n2a44

Meidan, Y., Sachidananda, V., Peng, H., Sagron, R., Elovici, Y., & Shabtai, A. (2020). A novel approach for detecting vulnerable IoT devices connected behind a home NAT. Computers & Security, 97, 101968.

Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A. R., & Tarkoma, S. (2017, June). Iot sentinel: Automated device-type identification for security enforcement in iot. In 2017 IEEE 37th international conference on distributed computing systems (ICDCS) (pp. 2177-2184). IEEE.

Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D., & Elovici, Y. (2017). Detection of unauthorized IoT devices using machine learning techniques. arXiv preprint arXiv:1709.04647.

Nguyen, T. T., & Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning. IEEE communications surveys & tutorials, 10(4), 56-76.

Perdisci, R., Papastergiou, T., Alrawi, O., & Antonakakis, M. (2020, September). Iotfinder: Efficient large-scale identification of iot devices via passive dns traffic analysis. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 474-489). IEEE.

Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R., Ahmed, D. M., Sami, A. S., & Zebari, R. R. (2021). IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Academic Journal, 1(2), 1-7. https://doi.org/10.48161/qaj.v1n2a36

Salman, O., Elhajj, I. H., Kayssi, A., & Chehab, A. (2020). A review on machine learning–based approaches for Internet traffic classification. Annals of Telecommunications, 75(11), 673-710.

Sánchez, P. M. S., Valero, J. M. J., Celdrán, A. H., Bovet, G., Pérez, M. G., & Pérez, G. M. (2021). A survey on device behavior fingerprinting: Data sources, techniques, application scenarios, and datasets. IEEE Communications Surveys & Tutorials, 23(2), 1048-1077.

Shaikh, F., Bou-Harb, E., Crichigno, J., & Ghani, N. (2018, June). A machine learning model for classifying unsolicited IoT devices by observing network telescopes. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 938-943). IEEE.

Shahid, M. R., Blanc, G., Zhang, Z., & Debar, H. (2018, December). IoT devices recognition through network traffic analysis. In 2018 IEEE international conference on big data (big data) (pp. 5187-5192). IEEE.

Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vishwanath, A., & Sivaraman, V. (2017, May). Characterizing and classifying IoT traffic in smart cities and campuses. In 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 559-564). IEEE.

Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A., & Sivaraman, V. (2018). Classifying IoT devices in smart environments using network traffic characteristics. IEEE Transactions on Mobile Computing, 18(8), 1745-1759.

Sivanathan, A., Gharakheili, H. H., & Sivaraman, V. (2018, December). Can we classify an iot device using tcp port scan?. In 2018 IEEE International Conference on Information and Automation for Sustainability (ICIAfS) (pp. 1-4). IEEE.

Tahaei, H., Afifi, F., Asemi, A., Zaki, F., & Anuar, N. B. (2020). The rise of traffic classification in IoT networks: A survey. Journal of Network and Computer Applications, 154, 102538.

Xenofontos, C., Zografopoulos, I., Konstantinou, C., Jolfaei, A., Khan, M. K., & Choo, K. K. R. (2021). Consumer, commercial, and industrial iot (in) security: Attack taxonomy and case studies. IEEE Internet of Things Journal, 9(1), 199-221.

Yazdeen, A. A., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Ahmed, O. M., & Zebari, R. R. (2021). FPGA implementations for data encryption and decryption via concurrent and parallel computation: A review. Qubahan Academic Journal, 1(2), 8-16. https://doi.org/10.48161/qaj.v1n2a38

Downloads

Published

2024-05-14

How to Cite

Almufti, S. M., Hani, A. A., Zeebaree, S. R. M., Asaad, R. R., Majeed, D. A., Sallow, A. B., & Ahmad, H. B. (2024). INTELLIGENT HOME IOT DEVICES: AN EXPLORATION OF MACHINE LEARNING-BASED NETWORKED TRAFFIC INVESTIGATION. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 1-10. https://doi.org/10.22437/jiituj.v8i1.32767

Most read articles by the same author(s)