SMART HOME ENERGY SAVING WITH BIG DATA AND MACHINE LEARNING
DOI:
https://doi.org/10.22437/jiituj.v8i1.32598Keywords:
Big Data, Internet of Things, HEMS-IoT, Smart HomeAbstract
In response to escalating energy consumption, particularly within the housing sector, a global imperative to reduce energy usage has emerged, propelling the concept of "smart houses" to the forefront of innovation. This paradigm shift owes its genesis to the convergence of advancements in energy conversion, communication networks, and information technology, catalyzing the emergence of the Internet of Things (IoT). The IoT facilitates seamless connectivity of devices via the World Wide Web, enabling remote management, monitoring, and detection capabilities. Capitalizing on this technological synergy, the integration of IoT, big data, and machine learning with home automation systems holds immense promise for enhancing energy efficiency. This paper introduces HEMS-IoT, a groundbreaking energy control system for intelligent homes, underpinned by big data analytics and machine learning algorithms, prioritizing security, convenience, and energy conservation. Leveraging J48 neural network technology and the Weka API, the study illuminates user behaviors and energy consumption patterns, enabling household classification based on energy usage profiles. Moreover, to ensure user comfort and safety, RuleML and Apache Mahout are deployed to customize energy-saving recommendations tailored to individual preferences. By presenting a practical demonstration of smart home monitoring, this paper validates the effectiveness of the proposed approach in enhancing security, comfort, and energy conservation. This pioneering research not only showcases the transformative potential of IoT-driven energy management systems but also sets the stage for a sustainable and interconnected future.
Downloads
References
Abdulqadir, H. R., Zeebaree, S. R., Shukur, H. M., Sadeeq, M. M., Salim, B. W., Salih, A. A., & Kak, S. F. (2021). A study of moving from cloud computing to fog computing. Qubahan Academic Journal, 1(2), 60-70. https://doi.org/10.48161/qaj.v1n2a49
Abdulqadir, H. R., Zeebaree, S. R., Shukur, H. M., Sadeeq, M. M., Salim, B. W., Salih, A. A., & Kak, S. F. (2021). A study of moving from cloud computing to fog computing. Qubahan Academic Journal, 1(2), 60-70. https://doi.org/10.48161/qaj.v1n2a49
Adiono, T., Putra, R. V. W., Fathany, M. Y., Wibisono, M. A., & Adijarto, W. (2015, November). Smart home platform based on optimized wireless sensor network protocol and scalable architecture. In 2015 9th International Conference on Telecommunication Systems Services and Applications (TSSA) (pp. 1-5). IEEE.
Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Yahia, H. S., Mahmood, M. R., & Ibrahim, I. M. (2021). Comprehensive survey of big data mining approaches in cloud systems. Qubahan Academic Journal, 1(2), 29-38. https://doi.org/10.48161/qaj.v1n2a46
Ageed, Z. S., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Rashid, Z. N., Salih, A. A., & Abdullah, W. M. (2021). A survey of data mining implementation in smart city applications. Qubahan Academic Journal, 1(2), 91-99. https://doi.org/10.48161/qaj.v1n2a52
Alarifi, A., & Tolba, A. (2019). Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks. Computers in Industry, 106, 133-141.
Al-Ali, A. R., Zualkernan, I. A., Rashid, M., Gupta, R., & AliKarar, M. (2017). A smart home energy management system using IoT and big data analytics approach. IEEE Transactions on Consumer Electronics, 63(4), 426-434.
Almufti, S. M., Marqas, R. B., Nayef, Z. A., & Mohamed, T. S. (2021). Real time face-mask detection with arduino to prevent covid-19 Spreading. Qubahan Academic Journal, 1(2), 39-46. https://doi.org/10.48161/qaj.v1n2a47
Asaad, R. R. (2021). Review on Deep Learning and Neural Network Implementation for Emotions Recognition. Qubahan Academic Journal, 1(1), 1-4. https://doi.org/10.48161/qaj.v1n1a25
Asaad, R. R., & Abdulhakim, R. M. (2021). The Concept of Data Mining and Knowledge Extraction Techniques. Qubahan Academic Journal, 1(2), 17-20. https://doi.org/10.48161/qaj.v1n2a43
Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
Baker, T., Asim, M., Tawfik, H., Aldawsari, B., & Buyya, R. (2017). An energy-aware service composition algorithm for multiple cloud-based IoT applications. Journal of Network and Computer Applications, 89, 96-108.
Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless personal communications, 58, 49-69.
Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16).
Chauhan, M. A., & Babar, M. A. (2017). Using reference architectures for design and evaluation of web of things systems: A case of smart homes domain. In Managing the Web of Things (pp. 205-228). Morgan Kaufmann.
Chilipirea, C., Ursache, A., Popa, D. O., & Pop, F. (2016, September). Energy efficiency and robustness for IoT: Building a smart home security system. In 2016 IEEE 12th international conference on intelligent computer communication and processing (ICCP) (pp. 43-48). IEEE.
Contreras, J. M., Campoverde, R. A., Hidalgo, J. C., & Tapia, P. V. (2015, October). Mobile applications using TCP/IP-GSM protocols applied to domotic. In 2015 XVI Workshop on Information Processing and Control (RPIC) (pp. 1-4). IEEE.
Elkhorchani, H., & Grayaa, K. (2016). Novel home energy management system using wireless communication technologies for carbon emission reduction within a smart grid. Journal of Cleaner Production, 135, 950-962.
Fensel, A., Tomic, D. K., & Koller, A. (2017). Contributing to appliances’ energy efficiency with Internet of Things, smart data and user engagement. Future Generation Computer Systems, 76, 329-338.
Gawali, S. K., & Deshmukh, M. K. (2019). Energy autonomy in IoT technologies. Energy Procedia, 156, 222-226.
Geraldo Filho, P. R., Villas, L. A., Gonçalves, V. P., Pessin, G., Loureiro, A. A., & Ueyama, J. (2019). Energy-efficient smart home systems: Infrastructure and decision-making process. Internet of Things, 5, 153-167.
Hossain, M. S., Rahman, M. A., & Muhammad, G. (2017). Cyber–physical cloud-oriented multi-sensory smart home framework for elderly people: An energy efficiency perspective. Journal of Parallel and Distributed Computing, 103, 11-21.
Huang, H., & Yu, H. (2019). Compact and fast machine learning accelerator for IoT devices (Vol. 149). Singapore: Springer.
Iqbal, J., Khan, M., Talha, M., Farman, H., Jan, B., Muhammad, A., & Khattak, H. A. (2018). A generic internet of things architecture for controlling electrical energy consumption in smart homes. Sustainable cities and society, 43, 443-450.
Kang, B., Park, S., Lee, T., & Park, S. (2015, January). IoT-based monitoring system using tri-level context making model for smart home services. In 2015 IEEE International Conference on Consumer Electronics (ICCE) (pp. 198-199). IEEE.
Kibria, M. G., Jarwar, M. A., Ali, S., Kumar, S., & Chong, I. (2017, July). Web objects based energy efficiency for smart home IoT service provisioning. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 55-60). IEEE.
Lanfor, O. G. F., & Pérez, J. F. P. (2017, September). Implementación de un sistema de seguridad independiente y automatización de una residencia por medio del internet de las cosas. In 2017 IEEE Central America and Panama Student Conference (CONESCAPAN) (pp. 1-5). IEEE.
Lee, N., Lee, H., Lee, H., & Ryu, W. (2015, October). Implementation of smart home service over web of object architecture. In 2015 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1215-1219). IEEE.
Li, W., Logenthiran, T., Phan, V. T., & Woo, W. L. (2018). Implemented IoT-based self-learning home management system (SHMS) for Singapore. IEEE Internet of Things Journal, 5(3), 2212-2219.
Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L., & Sgouridis, S. (2020). From big data to smart energy services: An application for intelligent energy management. Future Generation Computer Systems, 110, 572-586.
Matsui, K. (2017). An information provision system as a function of HEMS to promote energy conservation and maintain indoor comfort. Energy Procedia, 105, 3213-3218.
Matsui, K., Yamagata, Y., & Kawakubo, S. (2019). Real-time sensing in residential area using IoT technology for finding usage patterns to suggest action plan to conserve energy. Energy Procedia, 158, 6438-6445.
Maulud, D. H., Zeebaree, S. R., Jacksi, K., Sadeeq, M. A. M., & Sharif, K. H. (2021). State of art for semantic analysis of natural language processing. Qubahan academic journal, 1(2), 21-28. https://doi.org/10.48161/qaj.v1n2a44
Samuel, S. S. I. (2016, March). A review of connectivity challenges in IoT-smart home. In 2016 3rd MEC International conference on big data and smart city (ICBDSC) (pp. 1-4). IEEE.
Schuelke-Leech, B. A., Barry, B., Muratori, M., & Yurkovich, B. J. (2015). Big Data issues and opportunities for electric utilities. Renewable and Sustainable Energy Reviews, 52, 937-947.
Thema, J., Suerkemper, F., Couder, J., Mzavanadze, N., Chatterjee, S., Teubler, J., ... & Wilke, S. (2019). The multiple benefits of the 2030 EU energy efficiency potential. Energies, 12(14), 2798.
Salman, L., Salman, S., Jahangirian, S., Abraham, M., German, F., Blair, C., & Krenz, P. (2016, December). Energy efficient IoT-based smart home. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (pp. 526-529). IEEE.
Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R., Ahmed, D. M., Sami, A. S., & Zebari, R. R. (2021). IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Academic Journal, 1(2), 1-7. https://doi.org/10.48161/qaj.v1n2a36
Yazdeen, A. A., Zeebaree, S. R., Sadeeq, M. M., Kak, S. F., Ahmed, O. M., & Zebari, R. R. (2021). FPGA implementations for data encryption and decryption via concurrent and parallel computation: A review. Qubahan Academic Journal, 1(2), 8-16. https://doi.org/10.48161/qaj.v1n2a38
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hawar Bahzad Ahmad, Renas Rajab Asaad, Saman M Almufti, Ahmed Alaa Hani, Amira Bibo Sallow, Subhi R. M. Zeebaree
This work is licensed under a Creative Commons Attribution 4.0 International License.