EXPLORATION OF INDIGENOUS PLANT GROWTH PROMOTING FUNGI (PGPF) AS BIOLOGICAL CONTROL AGENTS AND BIOFERTILIZER

Authors

DOI:

https://doi.org/10.22437/jiituj.v8i1.31783

Keywords:

Biofertilizer, Biopesticide, Germination, Non-Pathogenic, PGPF

Abstract

This groundbreaking study ventures into uncharted territory to explore the vast potential of Plant Growth Promoting Fungi (PGPF) as multifaceted allies in agricultural sustainability. Departing from traditional paradigms, the research sets out to identify and characterize non-pathogenic fungal isolates with the capacity to serve as potent PGPF agents. Employing a pioneering approach, fungal isolates are meticulously collected from the rhizosphere of plants, heralding a new era of ecological exploration at the microorganism level. Rigorous testing for pathogenicity on soybean seeds unveils a rich reservoir of fungi diversity, with 18 isolates demonstrating remarkable efficacy in enhancing germination rates and promoting vigorous seedling growth. These findings not only underscore the pivotal role of PGPF in bolstering plant health and resilience but also herald a paradigm shift in sustainable agriculture. With the potential to serve as biopesticides for plant protection and biofertilizers for enhancing growth, these PGPF isolates offer a promising avenue for reducing reliance on synthetic inputs and mitigating environmental impacts. Moreover, their integration into integrated disease management strategies holds the promise of synergistic efficacy, paving the way for holistic approaches to agricultural sustainability. This research not only expands the frontiers of knowledge surrounding PGPF but also lays the groundwork for transformative innovations in agroecological practices, ushering in a greener, more resilient future for global agriculture.

Downloads

Download data is not yet available.

References

Adedayo, A. A., & Babalola, O. O. (2023). Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. Journal of Fungi, 9(2). https://doi.org/10.3390/jof9020239

Asniwita. (1989). Pengujian waktu pemberian Trichoderma harzianum Rifai pada tanah yang terinfestasi Phytophthora parasitica penyebab penyakit damping off pada bibit tembakau (Nicotiana tabacum L). Universitas Andalas.

Asniwita. (2016). Pemanfaatan cendawan endofit isolat lokal untuk meningkatkan produksi dan menginduksi ketahanan tanaman cabai terhadap infeksi virus. Universitas Jambi

Asniwita, & Hayati, I. (2017). Eksplorasi Cendawan Endofit Isolat Lokal dan Pengaruhnya terhadap Perkecambahan Benih Cabai (Capsicum annuum). Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 1(2), 178–184. https://doi.org/https://doi.org/10.22437/jiituj.v1i2.4280

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 10(September), 1–15. https://doi.org/10.3389/fpls.2019.01068

Brazhnikova, Y., Ignatova, L., Omirbekova, A., Mukasheva, T., Kistaubayeva, A., Savitskaya, I., Egamberdieva, D., Usmanova, A., & Batlutskaya, I. (2021). Effect of plant growth promotion fungi on agricultural crops. BIO Web of Conferences, 40. https://doi.org/10.1051/bioconf/20214001004

Cycon, M., Mrozik, A., & Piotrowska-Seget, Z. (2019). Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00338

Doilom, M., Guo, J. W., Phookamsak, R., Mortimer, P. E., Karunarathna, S. C., Dong, W., Liao, C. F., Yan, K., Pem, D., Suwannarach, N., Promputtha, I., Lumyong, S., & Xu, J. C. (2020). Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology, 11(October), 1–24. https://doi.org/10.3389/fmicb.2020.585215

Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8(OCT), 1–14. https://doi.org/10.3389/fmicb.2017.02104

El-Maraghy, S. S., Tohamy, A. T., & Hussein, K. A. (2020). Role of plant-growth promoting fungi (PGPF) in defensive genes expression of Triticum aestivum against wilt disease. Rhizosphere, 15. https://doi.org/https://doi.org/10.1016/j.rhisph.2020.100223

El-Maraghy, S. S., Tohamy, A. T., & Hussein, K. A. (2021). Plant protection properties of the Plant Growth-Promoting Fungi (PGPF): Mechanisms and potentiality. Current Research in Environmental and Applied Mycology, 11(July), 391–415. https://doi.org/10.5943/CREAM/11/1/29

El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Ahmed, A. I., Mahmood, M., El-Tahan, A. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Negm, S. H., Selim, S., Babalghith, A. O., Elrys, A. S., El-Tarabily, K. A., & AbuQamar, S. F. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Frontiers in Plant Science, 13(October), 1–19. https://doi.org/10.3389/fpls.2022.923880

Ghosh, S. K., Banerjee, S., & Sengupta, C. (2017). Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. JBiopest, 10(2), 105–112.

Halo, B. A., Al-Yahyai, R. A., & Al-Sadi, A. M. (2018). Aspergillus terreus inhibits growth and induces morphological abnormalities in Pythium aphanidermatum and suppresses pythium-induced damping-off of cucumber. Frontiers in Microbiology, 9(FEB), 1–12. https://doi.org/10.3389/fmicb.2018.00095

Heimpel, G. E., & Mills, N. (2017). Biological Control: Ecology and Application. Cambridge University Press. https://doi.org/10.1017/9781139029117

Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahamanage, R. S., Brooks, S., Chaiyasen, A., Chethana, K. W. T., Chomnunti, P., Chepkirui, C., Chuankid, B., de Silva, N. I., Doilom, M., Faulds, C., Gentekaki, E., … Stadler, M. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1), 1–136. https://doi.org/10.1007/s13225-019-00430-9

Islam, M., Rahman, M., Bulbul, S., & Alam, M. (2011). Effect of Trichoderma on Seed Germination and Seedling Parameters in Chili. Int. J. Expt. Agric, 2(1–2), 21–26. https://doi.org/10.3329/jsf.v8i1-2.14637

Jahagirdar, S., Kambrekar, D., Navi, S., & Kunta, M. (2019). Plant Growth-Promoting Fungi: Diversity and Classification. In Bioactive Molecules in Plant Defense: Signaling in Growth and Stress. Springer Nature. https://doi.org/10.1007/978-3-030-27165-7

Jogaiah, S., Abdelrahman, M., Tran, L. S. P., & Shin-Ichi, I. (2013). Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany, 64(12), 3829–3842. https://doi.org/10.1093/jxb/ert212

Khan, A. L., Gilani, S. A., Waqas, M., Al-Hosni, K., Al-Khiziri, S., Kim, Y. H., Ali, L., Kang, S. M., Asaf, S., Shahzad, R., Hussain, J., Lee, I. J., & Al-Harrasi, A. (2017). Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. Journal of Zhejiang University: Science B, 18(2), 125–137. https://doi.org/10.1631/jzus.B1500271

Lau, J. A., & Lennon, J. T. (2011). Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. New Phytologist, 192(1), 215–224. https://doi.org/10.1111/j.1469-8137.2011.03790.x

Malgioglio, G., Rizzo, G. F., Nigro, S., du Prey, V. L., Herforth-Rahmé, J., Catara, V., & Branca, F. (2022). Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. Sustainability (Switzerland), 14(4), 1–28. https://doi.org/10.3390/su14042253

Mendes, R., Garbeva, P., Jos, M., & Raaijmakers. (2013). The rhizosphere microbiome: significance of plant beneficial, plant patogenic, and human patogenic microorganisms. FEMS Microbiol Rev, 37, 634–663. https://doi.org/10.1111/1574-6976.12028

Mirta, B. (2023). Eksplorasi Plant Growth Promoting Fungi (PGPF) pada Tutupan Lahan Agroforestri serta Uji Efektivitasnya terhadap Persemaian Bibit Cabai Merah (Capsicum annum L.). Thesis. Universitas Hasanuddin.

Mohamed, A. H., Abd El-Megeed, F. H., Hassanein, N. M., Youseif, S. H., Farag, P. F., Saleh, S. A., Abdel-Wahab, B. A., Alsuhaibani, A. M., Helmy, Y. A., & Abdel-Azeem, A. M. (2022). Native Rhizospheric and Endophytic Fungi as Sustainable Sources of Plant Growth Promoting Traits to Improve Wheat Growth under Low Nitrogen Input. Journal of Fungi, 8(2). https://doi.org/10.3390/jof8020094

Murali, M., Sudisha, J., Amruthesh, K., Ito, S., & Shekar Shetty, H. (2013). Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol, 15, 111–118. https://doi.org/10.1111/j.1438-8677.2012.00617.x

Nagaraju, A., Sudisha, J., Mahadevamurthy, S., & Ito, S. (2012). Seed priming with Trichoderma harzianum isolats enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Australasian J Plant Pathol, 41, 609–620. https://doi.org/10.1007/s13313-012-0165-z

Naziya, B., Murali, M., & Amruthesh, K. N. (2020). Plant growth-promoting fungi (PGPF) instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici (syd.) butler & bisby. Biomolecules, 10(1), 4–6. https://doi.org/10.3390/biom10010041

Schnitzer, S., Klironomos, J., & Lambers, J. (2011). Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 92(2), 296–303. https://doi.org/10.1890/10-0773.1

Sektiono, A. W., Habtuti, N., Sandy, Y. A., & Setiawan, Y. (2023). Potential of Endophytic Fungi as Plant Growth-Promoting Fungi (PGPF) Against Growth of Single Bud Set Seedlings on Sugarcane Plants (Saccharum officinarum L). PLANTROPICA: Journal of Agricultural Science, 008(1), 71–79. https://doi.org/10.21776/ub.jpt.2023.008.1.8

Silva, J. M. da, Montaldo, Y. C., Almeida, A. C. P. S. de, Dalbon, V. A., Acevedo, J. P. M., Santos, T. M. C. dos, & Lima, G. S. de A. (2021). Rhizospheric Fungi to Plant Growth Promotion: A Review. Journal of Agricultural Studies, 9(1), 411. https://doi.org/10.5296/jas.v9i1.18321

Syamsia, S., Idhan, A., Firmansyah, A. P., Noerfitryani, N., Rahim, I., Kesaulya, H., & Armus, R. (2021). Combination on endophytic fungal as the plant growth-promoting fungi (PGPF) on cucumber (Cucumis sativus). Biodiversitas, 22(3), 1194–1202. https://doi.org/10.13057/biodiv/d220315

Zhang, C., Zhang, Y., Ding, Z., & Bai, Y. (2019). Contribution of Microbial Inter-kingdom Balance to Plant Health. Molecular Plant, 12(2), 148–149. https://doi.org/10.1016/j.molp.2019.01.016

Downloads

Published

2024-05-14

How to Cite

Asniwita, A., Novalina, N., Syarif, M., Bestari, A. V., & Obura, B. O. (2024). EXPLORATION OF INDIGENOUS PLANT GROWTH PROMOTING FUNGI (PGPF) AS BIOLOGICAL CONTROL AGENTS AND BIOFERTILIZER. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 240-250. https://doi.org/10.22437/jiituj.v8i1.31783