OPTIMASI SUHU KALSINASI KARBON AEROGEL BERBASIS CANGKANG KELAPA SAWIT UNTUK KATODA PADA APLIKASI BATERAI ION LITHIUM
DOI:
https://doi.org/10.22437/jop.v10i2.37393Keywords:
Carbon aerogel, Palm kernel shell, Cathode, Lithium-ion battery, PorosityAbstract
Palm kernel shell (PKS)-based carbon aerogel holds potential as a cathode material in lithium-ion batteries due to its porous structure and high conductivity. This study aims to determine the optimal calcination temperature to enhance the physical and thermal properties of PKS-based carbon aerogel. Calcination was performed at 400°C for 3 hours and 450°C for 2 hours to analyze the effects on morphology, thermal stability, and density of the carbon aerogel. Scanning Electron Microscope (SEM) analysis revealed that calcination at 450°C produced a more porous and irregular structure, which supports optimal ion movement. Differential Scanning Calorimetry (DSC) testing showed higher thermal stability at 450°C, with a total energy of -74.54 J/g. Additionally, the density of carbon aerogel at 450°C was 0.75 g/cm³, lower than 0.83 g/cm³ at 400°C, indicating better porosity for ionic conductivity. Therefore, a calcination temperature of 450°C for 2 hours is recommended as the optimal condition to improve carbon aerogel performance for lithium-ion battery cathode applications.
Downloads
References
Akinlabi, S. A., Jen, T. C., & Hassan, S. (2021). Characteristics of Palm Kernel Shell and Palm Kernel Shell-Polymer Composites : A.Review,11(7), 012019.
Desmagrini, D., Awitdrus, A., Taer, E., & Farma, R. (2021). Synthesis of activated carbon electrodes from date seeds with a variety of separators for supercapacitor cell applications. Journal of Aceh Physics Society, 10(3), 53–59.
Gultekin, S. Y., Guler, A., Kuruahmet, D., Güngör, H., Singil, M. M., Uzun, E., Akbulut, H., & Güler, M. O. (2023). Graphene aerogel-supported Na3V2(PO4)3/C cathodes for sodium-ion batteries. Diamond and Related Materials, 139(9), 110399
Hu, L., He, R., Lei, H., & Fang, D. (2019). Carbon Aerogel for Insulation Applications: A Review. International Journal of Thermophysics, 40(4), 2-25
Kanthachan, J., Khamman, O., Intatha, U., & Eitssayeam, S. (2021). Effect of reducing calcination processing on structural and electrochemical properties of LiNi0.5Mn0.3Co0.2O2cathode materials for lithium battery. Materials Today: Proceedings, 47(1), 3600–3603.
Opoku, B., Isaac, A., Akrofi Micheal, A., Kwesi Bentum, J., & Paul Muyoma, W. (2021). Characterization of Chemically Activated Carbons Produced from Coconut and Palm Kernel Shells Using SEM and FTIR Analyses. American Journal of Applied Chemistry, 9(3), 90-96.
Phan, M. T. (2023). Nipa palm shell-derived magnetic carbon aerogel for absorbents and storage energy. Journal of Non-Crystalline Solids, 615(1), 122–244.
Sun, S., Yan, Q., Wu, M., & Zhao, X. (2021). Carbon aerogel based materials for secondary batteries. Sustainable Materials and Technologies, 30(1) 20-26.
Wang, R., Zhang, T., Cheng, X., Xiao, J., & Gao, H. (2022). Ti3C2Tx aerogel with 1D unidirectional channels for high mass loading supercapacitor electrodes. Ceramics International, 48(14), 20324–20331.
Xiong, R., Pan, Y., Shen, W., Li, H., & Sun, F. (2020). Lithium-ion battery aging mechanisms and diagnosis method for automotive applications : Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 131(5), 110048.
Yani, A. F., Lubis, V., Ginting, D., & Syahputra, R. F. (2023). Pemanfaatan karbon aktif tempurung kelapa sebagai carbon black. 8(2), 90–95.
Zhai, Z., Wang, S., Xu, Y., Zhang, L., Wang, X., Yu, H., & Ren, B. (2024). Starch-based carbon aerogels prepared by an innovative KOH activation method for supercapacitors. International Journal of Biological Macromolecules, 257(1), 128587.
Zhang, Y., Du, X., Chen, L., Li, Z., Wang, W., Li,
T., & Yuan, M. (2019). Tri- ( 2-picolyl ) amine-modi fi cated triarylborane : Synthesis , photophysical properties and distinguish for cyanide and fl uoride anions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 218(1), 119–126.
Zi, Y., Sina, M., & John, B. (2024). Probing precipitation in aluminium alloys during linear cooling via in-situ differential scanning calorimetry and electrical resistivity measurement. Thermochimica Acta, 739(6)38-44.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 delovita ginting, romi syahputra, Putri Dahayu

This work is licensed under a Creative Commons Attribution 4.0 International License.