CLASSIFICATION ANALYSIS OF BRAIN TUMOR DISEASE IN RADIOGRAPHIC IMAGES USING SUPPORT VECTOR MACHINES (SVM) WITH PYTHON

Authors

  • Jihan Suci Ananda Universitas Jambi
  • Yoza Fendriani UNIVERSITAS JAMBI
  • Jesi Pebralia Universitas Jambi

DOI:

https://doi.org/10.22437/jop.v9i3.36270

Keywords:

brain tumor, radiographic images, Support Vector Machines (SVM), Phython.

Abstract

This research examines the analysis of brain tumor disease classification using radiographic images using the Python-based Support Vector Machines (SVM) method. Data was collected from the Kaggle platform with four main categories of brain tumors: normal, pituitary, glioma, and meningioma. The data is then processed, including cleaning, pixel intensity normalization, and feature extraction to distinguish brain tumor characteristics. The data were visualized to understand the distribution and characteristics of the tumor. With the implementation of Python, visual analysis becomes efficient. The SVM model was trained and evaluated, showing an accuracy of 90% with good evaluation metrics such as MAE, MSE, RMSE, and F1-SCORE. The results show that SVM has excellent potential as a diagnostic tool to support the identification and treatment of brain tumors.

Downloads

Download data is not yet available.

References

Alrizzaqi, M. M., Putri, R. R. M., & Wardani, N. H. (2018). Implementasi Metode Dempster-Shafer untuk Mendiagnosis Jenis Tumor Jinak pada Manusia. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(5), 2144-2149.

Amalia, H. (2018). Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis. Jurnal PILAR Nusa Mandiri, 14(1), 1-6

Fattah, M. S., Haq, D. Z., & Novitasari, D. C. R. Pengolahan Citra Digital untuk Identifikasi Kanker Otak Menggunakan Metode Deep Belief Network (DBN). Jurnal Informatika Universitas Pamulang, 6(4), 735-742. (2021)

Fitri, E. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. Jurnal Transformatika, 18(1), 71-80

KEMENKES, Mengenal Otak dan Bagain-Bagian Otak Kita, Juni 2022.

Kusuma, A. W., & Ellyana, R. L. (2018). Penerapan Citra Terkompresi Pada Segmentasi Citra Menggunakan Algoritma K-Means. Jurnal Terapan Teknologi Informasi, 2(1), 65-74.

Prasetyo, T. M., Amrullah, A., Syahrir, S., & Sari, B. N. (2022). Implementasi Algoritma SVM (Support Vector Machine) Dalam Klasifikasi Penyakit Paru-Paru Berdasarkan Fitur Pola Bentuk. (JurTI) Jurnal Teknologi Informasi, 6(1), 1-6.

Sagita, R., Enri, U., & Primajaya, A. (2020). Klasifikasi Berita Clickbait Menggunakan K-Nearest Neighbor (KNN). Vol. 5, 230-238.

Susanto, B. F., Rostianingsih, S., & Santoso, L. W. (2021). Analisa Audio Features dengan Membandingkan Metode Multiple Regression dan Polynomial Regression untuk Memprediksi Popularitas Lagu. Jurnal Infra, 9(2), 77-83

Wati, R. A., Irsyad, H., & Al Rivan, M. E. (2020). Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine. J. Algoritm, 1(1), 21-32.

Yueniwati, Y. (2017). Pencitraan pada Tumor Otak. Universitas Brawijaya P.ress

Downloads

Published

2024-08-07

How to Cite

Ananda, J. S. ., Fendriani, Y., & Pebralia, J. . (2024). CLASSIFICATION ANALYSIS OF BRAIN TUMOR DISEASE IN RADIOGRAPHIC IMAGES USING SUPPORT VECTOR MACHINES (SVM) WITH PYTHON. JOURNAL ONLINE OF PHYSICS, 9(3), 110-115. https://doi.org/10.22437/jop.v9i3.36270