CLASSIFICATION ANALYSIS OF BRAIN TUMOR DISEASE IN RADIOGRAPHIC IMAGES USING SUPPORT VECTOR MACHINES (SVM) WITH PYTHON
DOI:
https://doi.org/10.22437/jop.v9i3.36270Keywords:
brain tumor, radiographic images, Support Vector Machines (SVM), Phython.Abstract
This research examines the analysis of brain tumor disease classification using radiographic images using the Python-based Support Vector Machines (SVM) method. Data was collected from the Kaggle platform with four main categories of brain tumors: normal, pituitary, glioma, and meningioma. The data is then processed, including cleaning, pixel intensity normalization, and feature extraction to distinguish brain tumor characteristics. The data were visualized to understand the distribution and characteristics of the tumor. With the implementation of Python, visual analysis becomes efficient. The SVM model was trained and evaluated, showing an accuracy of 90% with good evaluation metrics such as MAE, MSE, RMSE, and F1-SCORE. The results show that SVM has excellent potential as a diagnostic tool to support the identification and treatment of brain tumors.
Downloads
References
Alrizzaqi, M. M., Putri, R. R. M., & Wardani, N. H. (2018). Implementasi Metode Dempster-Shafer untuk Mendiagnosis Jenis Tumor Jinak pada Manusia. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(5), 2144-2149.
Amalia, H. (2018). Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis. Jurnal PILAR Nusa Mandiri, 14(1), 1-6
Fattah, M. S., Haq, D. Z., & Novitasari, D. C. R. Pengolahan Citra Digital untuk Identifikasi Kanker Otak Menggunakan Metode Deep Belief Network (DBN). Jurnal Informatika Universitas Pamulang, 6(4), 735-742. (2021)
Fitri, E. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. Jurnal Transformatika, 18(1), 71-80
KEMENKES, Mengenal Otak dan Bagain-Bagian Otak Kita, Juni 2022.
Kusuma, A. W., & Ellyana, R. L. (2018). Penerapan Citra Terkompresi Pada Segmentasi Citra Menggunakan Algoritma K-Means. Jurnal Terapan Teknologi Informasi, 2(1), 65-74.
Prasetyo, T. M., Amrullah, A., Syahrir, S., & Sari, B. N. (2022). Implementasi Algoritma SVM (Support Vector Machine) Dalam Klasifikasi Penyakit Paru-Paru Berdasarkan Fitur Pola Bentuk. (JurTI) Jurnal Teknologi Informasi, 6(1), 1-6.
Sagita, R., Enri, U., & Primajaya, A. (2020). Klasifikasi Berita Clickbait Menggunakan K-Nearest Neighbor (KNN). Vol. 5, 230-238.
Susanto, B. F., Rostianingsih, S., & Santoso, L. W. (2021). Analisa Audio Features dengan Membandingkan Metode Multiple Regression dan Polynomial Regression untuk Memprediksi Popularitas Lagu. Jurnal Infra, 9(2), 77-83
Wati, R. A., Irsyad, H., & Al Rivan, M. E. (2020). Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine. J. Algoritm, 1(1), 21-32.
Yueniwati, Y. (2017). Pencitraan pada Tumor Otak. Universitas Brawijaya P.ress
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jihan Suci Ananda, Yoza Fendriani, Jesi Pebralia
This work is licensed under a Creative Commons Attribution 4.0 International License.