ANALISIS SIFAT OPTIK NANO PARTIKEL KARBON BERBAHAN DAUN PANDAN WANGI (PANDANUS AMARYLLIFOLIUS) DENGAN METODE SINTESIS HIDROTERMAL
DOI:
https://doi.org/10.22437/jop.v8i3.26728Keywords:
hidrotermal;, karbon;, nano partikel;, sifat optik;Abstract
Penelitian ini bertujuan untuk menentukan sifat optik, energi pergeseran Stokes, energi celah pita (Eg), gugus fungsi senyawa kimia dan ukuran karbon nano partikel atau Carbon Nanoparticles (CPNs). Sifat optik terdiri dari absorbansi dan intensitas flouresens yang dihasilkan oleh metode sintesis hidrotermal (150, 160, dan 180) ºC. Panjang gelombang absorbansi dan intensitas flouresens terdeteksi dengan metode spektroskopi UV-Vis (396.31, 399.61, dan 411.24) nm dan eksitasi laser 405 nm untuk emisi flouresens (524.18, 512.04, dan 510.92) nm. Energi pergeseran Stokes diperoleh berdasarkan perbedaan energi foton untuk ekesitasi (absorbansi) dan emisi (flouresen) dengan nilai (0.59, 0.55 dan 0.69) eV. Energi celah pita (Eg) ditentukan dengan mengekstrapolasi grafik ke rentang linier untuk memotong sumbu energi foton. Nilai Eg adalah (2.55, 3.43, dan 2.50) eV. Spektrum dan nilai koefisien ekstensi (k), konduktivitas optik (σopt) meningkat sedangkan indeks bias (n) menurun sering bertambahnya suhu hidrotermal. Spektrum FT-IR dan ukuran CNPs dilakukan dengan menggunakan sampel suhu 180 ºC. Gugus fungsi kimia yang terbentuk adalah C-H, C-N, N=C=S, O=C=O serta senyawa Nitrogen (NO2). Ukuran rata-rata nano partikel karbon adalah 11.09 nm berdasarkan intensitas (%), volume (%) dan nomor (%) partikel pada sampel CNPs.
Downloads
References
Acosta Gentoiu, M., Betancourt-Riera, R., Vizireanu, S., Burducea, I., Marascu, V., Stoica, S. D., Bita, B. I., Dinescu, G., & Riera, R. (2017). Morphology, Microstructure, and Hydrogen Content of Carbon Nanostructures Obtained by PECVD at Various Temperatures. Journal of Nanomaterials, 2017, 1–8. https://doi.org/10.1155/2017/1374973.
Bajpai, S. K., D’Souza, A., & Suhail, B. (2019). Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters, 9(3), 203–212. https://doi.org/10.1007/s40089-019-0271-9.
Bandi, R., Gangapuram, B. R., Dadigala, R., Eslavath, R., Singh, S. S., & Guttena, V. (2016). Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 6(34), 28633–28639.
Brennan, M. C., Zinna, J., & Kuno, M. (2017). Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals. ACS Energy Letters, 2(7), 1487–1488. https://doi.org/10.1021/acsenergylett.7b00383.
Carvalho, M. T., Dominguez, C. T., de Araujo, C. B., Prasad, P. N., & Gomes, A. S. L. (2014). Three-Photon Pumped Anti-Stokes Emission in Random Lasers. Latin America Optics and Photonics Conference, LTu1C.3. https://doi.org/10.1364/LAOP.2014.LTu1C.3.
Chunduri, L. A. A., Kurdekar, A., Patnaik, S., Dev, B. V., Rattan, T. M., & Kamisetti, V. (2016). Carbon Quantum Dots from Coconut Husk: Evaluation for Antioxidant and Cytotoxic Activity. Materials Focus, 5(1), 55–61.
Clancy, A. J., Bayazit, M. K., Hodge, S. A., Skipper, N. T., Howard, C. A., & Shaffer, M. S. P. (2018). Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chemical Reviews, 118(16), 7363–7408. https://doi.org/10.1021/acs.chemrev.8b00128.
Dahlan, D., Leng, T. S., & Aziz, H. (2016). Dye Sensitized Solar Cells (DSSC) dengan Sensitiser Dye Alami Daun Pandan, Akar Kunyit dan Biji Beras Merah (Black Rice). JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 8(1), 1–8.
Dewi, A. R. C., Aji, M. P., & Sulhadi, S. (2016). Absorbance spectrum carbon nanodots (c-dots) daun tembakau. Prosiding seminar nasional fisika (e-journal) snf2016 unj, snf2016-mps-129-snf2016-mps-134. https://doi.org/10.21009/0305020225
di Nunzio, M. R., Gutiérrez, M., Moreno, J. M., Corma, A., DÃaz, U., & Douhal, A. (2021). Interrogating the Behaviour of a Styryl Dye Interacting with a Mesoscopic 2D-MOF and Its Luminescent Vapochromic Sensing. International Journal of Molecular Sciences, 23(1), 330.
El Hachmi, A., & Manoun, B. (2023). Complex dielectric, electric modulus, impedance, and optical conductivity of Sr 3− x Pb x Fe 2 TeO 9 ( x = 1.50, 1.88 and 2.17). International Journal of Materials Research, 114(2), 100–111. https:/
Gek Niken Tasya Lingling. (2023). Potensi Ekstrak Daun Pandan Wangi (Pandanus amaryllifolius Roxb) Sebagai Antibakteri Pada Sediaan Gel Facial Wash. Prosiding Workshop dan Seminar Nasional Farmasi, 1, 283–294. https://doi.org/10.24843/WSNF.2022.v01.i01.p23
González-GarcÃa, Y., López-Vargas, E. R., Cadenas-Pliego, G., Benavides-Mendoza, A., González-Morales, S., Robledo-Olivo, A., Alpuche-SolÃs, Ã. G., & Juárez-Maldonado, A. (2019). Impact of Carbon Nanomaterials on the Antioxidant System of Tomato Seedlings. International Journal of Molecular Sciences, 20(23), 5858. https://doi.org/10.3390/ijms20235858
Hamam, K. J., & Alomari, M. I. (2017). A study of the optical band gap of zinc phthalocyanine nanoparticles using UV–Vis spectroscopy and DFT function. Applied Nanoscience, 7(5), 261–268. https://doi.org/10.1007/s13204-017-0568-9
Himaja, A. L., Karthik, P. S., Sreedhar, B., & Singh, S. P. (2014). Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. Journal of Fluorescence, 24(6), 1767–1773.
Indrayana, I. P. T., & Suharyadi, E. (2018). Crystallite Size-Lattice Strain Estimation and Optical Properties of Mn 0.5 Zn 0.5 Fe 2 O 4 Nanoparticles. Journal of Physics: Conference Series, 1011, 012063. https://doi.org/10.1088/1742-6596/1011/1/012063.
Jelinek, R. (2017). Carbon-Dot Synthesis. In R. Jelinek, Carbon Quantum Dots (pp. 5–27). Springer International Publishing. https://doi.org/10.1007/978-3-319-43911-2_2.
Kariper, İ. A., Hepokur, C., Danışman-Kalındemirtaş, F., & Kuruca, S. E. (2022). A new method for synthesis of carbon nanoparticle and its applications. Journal of Taibah University for Science, 16(1), 966–975. https://doi.org/10.1080/16583655.2022.2131996.
Kasmiarno, L. D., Fikarda, A., Gunawan, R. K., & Sambudi, S. (2021). Carbon Quantum Dots (CQds) from Rambutan and Pandan Leaves for Cu2+ Detection. Waste Technology, 9.
Khan, W. U., Wang, D., Zhang, W., Tang, Z., Ma, X., Ding, X., Du, S., & Wang, Y. (2017). High Quantum Yield Green-Emitting Carbon Dots for Fe(ІІІ) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Scientific Reports, 7(1), 14866. https://doi.org/10.1038/s41598-017-15054-9.
Kiyato, P., Kamu, V. S., & Runtuwene, M. R. J. (2022). Skrining Fitokimia dan Uji Aktivitas Antioksidan Fraksi Pelarut dari Ekstrak Metanol Batang Pandan Wangi (Pandanus amaryllifolius Roxb).
Kotia, A., Yadav, A., Rohit Raj, T., Gertrud Keischgens, M., Rathore, H., & Sarris, I. E. (2020). Carbon Nanoparticles as Sources for a Cost-Effective Water Purification Method: A Comprehensive Review. Fluids, 5(4), 230.
Lagos, K. J., Buzzá, H. H., Bagnato, V. S., & Romero, M. P. (2021). Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. International Journal of Molecular Sciences, 23(1), 22. https://doi.org/10.3390/ijms23010022.
Laksono, E. W., Marfuatun, & Aji, D. (2016). Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves ( Pandanus tectorius ) for Li-ion Battery. MATEC Web of Conferences, 64, 04001. https://doi.org/10.1051/matecconf/20166404001
Lazzarin, L., Pasini, M., & Menna, E. (2021). Organic Functionalized Carbon Nanostructures for Solar Energy Conversion. Molecules, 26(17), 5286. https://doi.org/10.3390/molecules26175286
Liu, M. (2020). Optical Properties of Carbon Dots: A Review. Nanoarchitectonics, 1(1), 1–12. https://doi.org/10.37256/nat.112020124.1-12
Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Frontiers in Pharmacology, 9, 1401. https://doi.org/10.3389/fphar.2018.01401
Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. The Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892
Mehta, V. N., Jha, S., Singhal, R. K., & Kailasa, S. K. (2014). Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J. Chem., 38(12), 6152–6160. https://doi.org/10.1039/C4NJ00840E
Mohiuddin, S. M. U. G., Aydarous, A., Alshahrie, A., Saeed, A., Memić, A., Abdullahi, S., & Salah, N. (2022). Structural, morphological, and optical properties of carbon nanoparticles unsheathed from date palm fronds. RSC Advances, 12(42), 27411–27420. https://doi.org/10.1039/D2RA04189H
Pandiyan, S., Arumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T. A., & Gandhirajan, V. (2020). Biocompatible Carbon Quantum Dots Derived from Sugarcane Industrial Wastes for Effective Nonlinear Optical Behavior and Antimicrobial Activity Applications. ACS Omega, 5(47), 30363–30372. https://doi.org/10.1021/acsomega.0c03290
Petersen, J. E., Twagirayezu, F., Scolfaro, L. M., Borges, P. D., & Geerts, W. J. (2017). Electronic and optical properties of antiferromagnetic iron doped NiO – A first principles study. AIP Advances, 7(5), 055711. https://doi.org/10.1063/1.4975493
Porto, L. S., Silva, D. N., de Oliveira, A. E. F., Pereira, A. C., & Borges, K. B. (2020). Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Reviews in Analytical Chemistry, 38(3). https://doi.org/10.1515/revac-2019-0017.
Putra, M., Darmawan, A., Wahdini, I., & Abasaeed, A. (2017). Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study. Journal of the Serbian Chemical Society, 82(7–8), 921–931. https://doi.org/10.2298/JSC161203038P.
Putro, P. A., & Maddu, A. (2019). Sifat optik carbon dots (c-dots) dari daun bambu hasil sintesis hijau berbantukan gelombang mikro. Wahana Fisika, 4(1), 47. https://doi.org/10.17509/wafi.v4i1.15569.
Rabee, B. H., & Razooqi, F. Z. (n.d.). Investigation of Optical Properties for (PVA-PEG-Ag) Polymer Nanocomposites Films.
Rahman, Md. A., Rahaman, Md. Z., & Sarker, Md. A. R. (2016). First principles investigation of structural, elastic, electronic and optical properties of HgGeB 2 (B P, As) chalcopyrite semiconductors. Computational Condensed Matter, 9, 19–26. https://doi.org/10.1016/j.cocom.2016.09.001.
Ren, R., Zhong, Y., Ren, X., & Fan, Y. (2022). Chitosan-based oxygen-doped activated carbon/graphene composite for flexible supercapacitors. RSC Advances, 12(39), 25807–25814. https://doi.org/10.1039/D2RA03949D
Rokhmah, N. N., Yulianita, Y., & Putra, R. A. (2021). EFEKTIVITAS GEL DAUN PANDAN WANGI SEBAGAI OBAT LUKA BAKAR PADA TIKUS PUTIH JANTAN. Pharmacoscript, 4(2), 131–140. https://doi.org/10.36423/pharmacoscript.v4i2.595.
Sayoga, M. H., Wartini, N. M., & Suhendra, L. (2020). Pengaruh Ukuran Partikel dan Lama Ekstraksi terhadap Karakteristik Ekstrak Pewarna Alami Daun Pandan Wangi (Pandanus amaryllifolius R.). JURNAL REKAYASA DAN MANAJEMEN AGROINDUSTRI, 8(2), 234. https://doi.org/10.24843/JRMA.2020.v08.i02.p08.
Sednev, M. V., Belov, V. N., & Hell, S. W. (2015). Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: A review. Methods and Applications in Fluorescence, 3(4), 042004. https://doi.org/10.1088/2050-6120/3/4/042004.
Shen, J., Shang, S., Chen, X., Wang, D., & Cai, Y. (2017). Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Materials Science and Engineering: C, 76, 856–864. https://doi.org/10.1016/j.msec.2017.03.178.
Stopel, M. H. W., Blum, C., & Subramaniam, V. (2014). Excitation Spectra and Stokes Shift Measurements of Single Organic Dyes at Room Temperature. The Journal of Physical Chemistry Letters, 5(18), 3259–3264. https://doi.org/10.1021/jz501536a
Stoyanov, S. R., Komreddy, V., Rillema, D. P., Moore, C. E., & Nguyen, H. (2020). Synthesis and Computational and Experimental Investigations of a para -Nicotinic Acid-Bridged Dirhenium (I) Dimer Complex. ACS Omega, 5(22), 12944–12954. https://doi.org/10.1021/acsomega.0c00704.
Sundaram, P., & Abrahamse, H. (2020). Phototherapy Combined with Carbon Nanomaterials (1D and 2D) and Their Applications in Cancer Therapy. Materials, 13(21), 4830.
Tuccitto, N., Riela, L., Zammataro, A., Spitaleri, L., Li-Destri, G., Sfuncia, G., Nicotra, G., Pappalardo, A., Capizzi, G., & Trusso Sfrazzetto, G. (2020). Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Applied Nano Materials, 3(8), 8182–8191. https://doi.org/10.1021/acsanm.0c01593.
Ţucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry, 46(6), 502–520.
Vatchalan, L., & S., P. (2021). Carbon Nano Particles as better Adsorbent against Photocatalytic Degrader for the Rhodamine—B Dye. Journal of Water and Environmental Nanotechnology, 6(3). https://doi.org/10.22090/jwent.2021.03.004.
Waleed. B. Abdala*1, R. A. E. (2018). Refractive Index, Energy Gap, And Optical Conductivity For Wooden Carbon Sinag Treated By Some Acids. https://doi.org/10.5281/ZENODO.1445504.
Yu, L., Tatsumi, D., & Kondo, T. (2022). Preparation of carbon nanoparticles from activated carbon by aqueous counter collision. Journal of Wood Science, 68(1), 29. https://doi.org/10.1186/s10086-022-02036-3.
Yuan, X., Zhang, X., Sun, L., Wei, Y., & Wei, X. (2019). Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Particle and Fibre Toxicology, 16(1), 18.
Zeng, Z., Zhang, W., Arvapalli, D. M., Bloom, B., Sheardy, A., Mabe, T., Liu, Y., Ji, Z., Chevva, H., Waldeck, D. H., & Wei, J. (2017). A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation. Physical Chemistry Chemical Physics, 19(30), 20101–20109. https://doi.org/10.1039/C7CP02875J.