IDENTIFIKASI LIMBAH PALM OIL MILL EFFLUENT (POME) MENGGUNAKAN BIOSENSOR BERBASIS ALGA
DOI:
https://doi.org/10.22437/jop.v7i1.14387Keywords:
Biosensor, Palm Oil Mill Effluent, Alga, Oksigen TerlarutAbstract
Palm Oil Mill Effluent (POME) merupakan limbah minyak kelapa sawit yang memiliki kadar Chemical Oxygen Demand (COD) dan Biochemical Oxygen Demand (BOD) yang tinggi dan sehingga merusak ekosistem periairan serta menurunkan kadar oksigen terlarut (DO). Namun, POME memiliki nutrisi untuk sel alga dalam memproduksi oksigen. Berdasarkan hal tersebut diperlukan identifikasi POME yang jatuh kebadan air berdasarkan fotosintesis Chlorella sp. menggunakan biosensor. Biosensor telah banyak dikembangkan dalam aplikasi bidang lingkungan dengan melihat kadar oksigen terlarut sebagai kualitas perairan. Penelitian ini menggunakan biosensor dengan prinsip sensor amperometris tipe Biochip-G. Sensor amperometris mengukur perubahan arus dari reaksi reduksi dan oksidasi dan menghasilkan potensial keluaran yang terukur. Potensial keluaran yang terukur merupakan kadar oksigen terlarut dari penambahan POME terhadap Chlorella sp. ketika proses fotosintesis terjadi. Identifikasi POME berdasarkan proses fotosintesis Chlorella sp. menggunakan cahaya artifisial LED Putih 380 nm-780 nm dengan tingkat variasi konsentrasi POME sebanyak 10%, 20%, dan 30%. Berdasarkan pengukuran kadar oksigen terlarut (DO) menghasilkan nilai DO sebesar 174.15%, 154.66%, dan 138.98% serta nilai sensitivitas sebesar 4mV/%POME.
Downloads
References
Ahmad, A., Buang, A., & Bhat, A. H. (2016). Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review. Renewable and Sustainable Energy Reviews, 65, 214–234.
Ahmad, A. L., Chong, M. F., Bhatia, S., & Ismail, S. (2006). Drinking water reclamation from palm oil mill effluent (POME) using membrane technology. Desalination, 191(1–3), 35–44.
Altunoz, M., Allesina, G., Pedrazzi, S., & Guidetti, E. (2020). Integration of biological waste conversion and wastewater treatment plants by microalgae cultivation. Process Biochemistry, 91, 158–164.
Cellasys. (2014). BioChip-G (Order No. 08502). 1–7.
Hariz, H. B., & Takriff, M. S. (2017). Palm oil mill effluent treatment and CO2 sequestration by using microalgae—sustainable strategies for environmental protection. Environmental Science and Pollution Research, 24(25), 20209–20240.
HiMedia Laboratories. (2015). Algae Culture Broth. 2166.
Kamarudin, K. F., Tao, D. G., Yaakob, Z., Takriff, M. S., Rahaman, M. S. A., & Salihon, J. (2015). A review on wastewater treatment and microalgal by-product production with a prospect of palm oil mill effluent (POME) utilization for algae. Der Pharma Chemica, 7(7), 73–89.
Karunakaran, C., Bhargava, K., & Benjamin, R. (2015). Biosensors and bioelectronics. Elsevier.
Levine, R. B., Costanza-Robinson, M. S., & Spatafora, G. A. (2011). Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass and Bioenergy, 35(1), 40–49.
Randrianarison, G., & Ashraf, M. A. (2018). Microalgae plant (Chlorella sp.) for wastewater treatment and energy production. Ekoloji, 27(106), 1455–1465.
Umar, L., Alexander, F. A., & Wiest, J. (2015). Application of algae-biosensor for environmental monitoring. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-Novem, 7099–7102.
Umar, L., Harvenda, V., Setiadi, R. N., Linda, T. M., & Wiest, J. (2019). Influence of herbicide 2,4-D dimethylamine 865SL on photosynthetic mechanism of algae species Chlorella Kessleri immobilized in a biochip. AIP Conference Proceedings, 2169.
Vijayaraghavan, K., & Ahmad, D. (2006). Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. International Journal of Hydrogen Energy, 31(10), 1284–1291.
Wiest, J., Brischwein, M., Ressler, J., Otto, A. M., Grothe, H., & Wolf, B. (2005). Cellular assays with multiparametric bioelectronic sensor chips. Chimia, 59(5), 243–246.