PERANCAH TULANG BERBASIS KOMPOSIT HIDROKSIAPATIT/SILIKA MELALUI METODE 3D-PRINTING: SEBUAH KAJIAN NARATIF
DOI:
https://doi.org/10.22437/jop.v6i1.10598Abstract
Bone scaffolding is an alternative solution developed to assist the bone therapy process. One of the materials with good biocompatibility and can be applied as a scaffold is hydroxyapatite (HAp). The development of HAp/silica composites aims to improve various characteristics of pure HAp-based scaffolding. In this article, a narrative review is conducted regarding the use of cockle shells as a source of calcium in the synthesis of HAp and tin tailings sand as a silica source. Various HAp synthesis and silica purification methods were compared to obtain the optimal HAp/silica composites method. Furthermore, this article also describes the potential use of 3D-printing technology in scaffolding fabrication. It is because 3D-printing technology has a promising prospect for producing scaffolding with complex structures precisely, efficiently, and quickly to meet patient needs. Also, we explained the challenges of applying 3D-printing technology to provide input for related research in the future.
Downloads
References
Afriani, F., Dahlan, K., Nikmatin, S. & Zuas, O., 2015. Alginate affecting the characteristics of porous beta-TCP/alginate composite scaffolds. Journal of Optoelectronics and Biomedical Materials, 7(3), pp. 67-76.
Afriani, F. et al., 2018. Purification of silica from tin tailing by acid leaching methods. Pangkalpinang, Atlantis Press.
Afriani, F. et al., 2019. Synthesis and characterization of hydroxyapatite/silica composites based on cockle shells waste and tin tailings. IOP Conference Series: Earth and Environmental Science, Volume 353, p. 012032.
Afriani, F. et al., 2020. Synthesis of porous hydroxyapatite scaffolds from waste cockle shells by polyurethane sponge replication method. Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika, 6(1), pp. 28-33.
Akbar, F. et al., 2019. Sintesis Ca2P2O7 dari limbah kerang dengan metode solvothermal. Jurnal Fisika dan Aplikasinya, 15(3), pp. 110-113.
Ali, N. H. M., Subuki, I. & Ismail, M. H., 2014. Synthesized Hydroxyapatite Powder from Clamshell via Chemical Precipitation Method. Advanced Materials Research , Volume 911, pp. 72-76.
Amin, A. & Ulfah, M., 2017. Sintesis dan Karakterisasi komposit hidroksiapatit dari tulang ikan lamuru (Sardilnella longiceps) - kitosan sebagai bone filler. Jurnal Farmasi UIN Alauddin Makasar, Volume 5, pp. 9-15.
Anitha, A. et al., 2017. Bioinspired Composite Matrix Containing Hydroxyapatite−Silica Core−Shell Nanorods for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 9(32), pp. 26707-26718.
Ardhiyanto, H., 2011. Peran hidroksiapatit sebagai bone graft dalam proses penyembuhan tulang. Stomatognatic (J.K.G. Unej), 8(2), pp. 118-121.
Azis, Y., Jamarun, N., Arief, S. & Nur, H., 2015. Facile Synthesis of Hydroxyapatite Particles from Cockle Shells (Anadaragranosa) by Hydrothermal Method. Oriental Journal of Chemistry, 31(2), pp. 1099-1105.
Balgies, Dewi, S. & Dahlan, K., 2011. Sintesis dan Karakterisasi Hidroksiapatit Menggunakan Analisis X-Ray Diffraction. s.l., Balgies.
Bandyopadhyay, A., Bose, S. & Das, S., 2015. 3D Printing of Biomaterials. MRS bulletin, 40(2), pp. 108-115.
Boro, J., Deka, D. & Thakur, A. J., 2011. A review on solid oxide from waste shells as catalyst for biodiesel production. Renewable and Sustainable Energy Reviews, 16(1), pp. 904-910.
Burg, K., Porter, S. & Kellam, J., 2000. Biomaterial developments for bone tissue engineering. Biomaterials, 21(23), pp. 2347-2359.
Evi.J, Tiandho, Y., Rafsanjani, R. A. & Afriani, F., 2019. Purification of silica from tin tailings through solid-state method. IOP Conference Series: Earth and Environmental Science, 353(1), p. 012025.
Gendviliene, I. et al., 2020. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HA scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, Volume 104, pp. 1-7.
Guvendiren, M., Molde, J., Soares, R. M. & Kohn, J., 2016. Designing Biomaterials for 3D Printing. ACS Biomaterials Science & Engineering, 2(10), pp. 1679-1693.
Hairunisa, Shofiyani, A. & Syahbanu, I., 2019. Sintesis kalsium oksida dari cangkang kerang ale-ale (Meretrix meretrix) pada suhu kalsinasi 700 C. Jurnal Kimia Khatulistiwa, 8(1), pp. 36-40.
Hagood, K. P., Litster, J. D., Biggs, S. R. & Howes, T., 2002. Drop Penetration into Porous Powder Beds. Journal of Colloid and Interface Science, Volume 253, p. 353–366.
Hayati, R. & Astuti, 2015. Sintesis nanopartikel silika dari pasir pantai purus padang sumatera barat dengan metode kopresipitasi. Jurnal Fisika Unand, 4(3), pp. 282-287.
Ichsan, A. R., 2018. Simulasi Prediksi Pengaruh Degradasi Implan Perancah Tulang Berpori Terhadap Sifat Mekanis Besi Murni pada Tulang Trabekular, Sumatera Selatan: Universitas Sriwijaya.
Kementerian Kesehatan RI, 2013. Riset Kesehatan Dasar (Riskesdas). Jakarta: Badan Penelitian dan Pengembangan Kesehatan.
Kumar, G. & Rangaiyan, V., 2016. Chemical and mineralogical measurements on estuarine clam meretrix casta shells of yadayanthittu estuary, southeast coast of India. The Pharmaceutical and Chemical Journal, 3(1), pp. 142-148.
Latifi, S., Fathi, M. & Golozar, M., 2011. Preparation and characterisation of bioactive hydroxyapatite–silica composite nanopowders via sol–gel method for medical applications. Advances in Applied Ceramics, 110(1), pp. 8-14.
Leukers, B. et al., 2005. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine, 16(12), pp. 1121-1124.
Limmahakhun, S. et al., 2017. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction. Materials & Design, Volume 114, pp. 633-641.
Liu, J. & Yan, C., 2018. 3D printing of scaffolds for tissue engineering. s.l.:Intech Open.
Montufar, E. et al., 2010. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomaterialia, Volume 6, p. 876–885.
Muhara, I., Fadli, A. & Akbar, F., 2015. Sintesis Hidroksiapatit Dari Kulit Kerang Darah Dengan Metode Hidrotermal Suhu Rendah. Jom FTEKNIK, 2(1), pp. 1-5.
Park, S. A., Lee, S. H. & Kim, W. D., 2011. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng, Volume 34, p. 505–513.
Pingak, R., Johannes, A. & Lapono, L., 2018. Analisis Potensi Pasir Tablolong Dan Pasir Koka Sebagai Sumber Silika Menggunakan Uji XRF Dan XRD. Jurnal Fisika: Fisika Sains dan Aplikasinya, 3(2), pp. 132-136.
Pingak, R., Ahab, A. & Baunsele, S., 2019. Pemurnian silika dari pasir tablolong menggunakan metode ekstraksi sederhana. SAINSTEK, 4(1), pp. 123-136.
Rapacz-Kmita, A., Ślósarczyk, A. & Paszkiewicz, Z., 2006. Mechanical properties of HA–ZrO2 composites. Journal of the European Ceramic Society, 26(8), pp. 1481-1488.
Riogilang, H. & Masloman, H., 2009. Pemanfaatan Limbah Tambang Untuk Bahan Kontruksi Bangunan. EKOTON, Volume 9, pp. 96-73.
Sagaran, V., Manjas, M. & Rasyid, R., 2017. Distribusi Fraktur Femur yang Dirawat di Rumah Sakit Dr. M. Djamil, Padang (2010-2012). J Kesehatan Andalas, Volume 6, p. 586–589.
Saijo, H. et al., 2009. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. Journal of Artificial Organs, 12(3), pp. 200-205.
Saryati, S. et al., 2012. Hidroksiapatit berpori dari kulit kerang. Jurnal Sains Materi Indonesia, 13(4), pp. 31- 35.
Seitz, H. et al., 2005. Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering. Wiley InterScience, pp. 782-78.
Serra, T., Planell, J. & Navarro, M., 2013. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia, Volume 9, p. 5521–5530.
Shirazi, S. et al., 2015. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, Volume 16, pp. 1-20.
Singhasiri, T. & Tantemsapya, N., 2016. The utilization of waste egg and cockle shell as catalysts for biodiesel production from food processing waste oil using stirring and ultrasonic agitation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(21), pp. 3125-3131.
Sutal, Y., Pingak, R. K., Ahab, A. S. & Baunsele, S., 2019. Kajian awal ekstraksi silika dari pasir Noeltoko menggunakan X-Ray Fluoresence. SAINSTEK, 4(1), pp. 75-78.
Sya’ban, S., Fatmaningrum, W. & Bayusentono, S., 2017. The Profile of Fracture in Patients Under 17 Years of Age at RSUD Dr. Soetomo in the Period of 2013-2014. J of Orthopaedic and Traumatology Surabaya, Volume 6, p. 21–32.
Tripathi, G. & Basu, B., 2012. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceramics International, Volume 38, p. 341–349.
Truby, R. L. & Lewis, J. A., 2016. Printing soft matter in three dimensions. Nature, 540(7633), pp. 371-378.
Venkatesan, J. & Kim, S., 2010. Chitosan Composites for Bone Tissue Engineering-An Overview. Marine Drugs, Volume 8, pp. 2252-2266.
Wang, Y. et al., 2015. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), pp. 313-327.
Zheng, X. et al., 2016. Multiscale metallic metamaterials. Nature materials, 15(10), pp. 1100-1106.