Development of Learning Cycle 5E-Based Teaching Tools to Facilitate Students’ Conceptual Changes in Mathematics Learning

Authors

  • Ega Gradini Institut Agama Islam Negeri Takengon
  • Susanti Susanti Universitas Islam Negeri Ar-Raniry

DOI:

https://doi.org/10.22437/edumatica.v12i02.16933

Keywords:

conceptual change, learning cycle, conceptual understanding

Abstract

This article describes the results of developing Learning Cycle 5E teaching tools that are valid, practical, and effective to facilitate students' conceptual changes in Statistics and Data Presentation material. The Four-D model was used to develop this research. The quality of the product is measured through the validity, practicality, and effectiveness of teaching tools. The device's validity is measured by its relevance and consistency using expert judgment. The device's practicality was measured using a practicality assessment questionnaire, distributed to 5 Mathematics teachers and 20 eighth-grader. Effectiveness was measured through a small group trial involving 1 Mathematics teacher and 28 eighth-grader students. The results showed that the teaching tools developed met the validity, practicality, and effectiveness criteria. Learning tools are declared valid, with the validity score for lesson plans being 0.89, student worksheets being 0.86, teacher book being 0.78, and student book being 0.80. Learning tools are declared practical with a practicality score where the teacher's response is 80.31% in the practical category, and the student's response is 79.19% in the practical category. Furthermore, teaching tools were declared effective with the criteria; the classical average of student learning outcomes reached 83.71, the Learning Completeness Criteria reached 82.14%, the level of teacher learning management was at a Good level, and student activity reached 72.5%.

Downloads

Download data is not yet available.

References

Admoko, S., Yantidewi, M., & Oktafia, R. (2019). The implementation of guided discovery learning using virtual lab simulation to reduce students’ misconception on mechanical wave. Journal of Physics: Conference Series, 1417(1), 12089.

Agustyaningrum, N. (2011). Implementasi model pembelajaran learning cycle 5E untuk meningkatkan kemampuan komunikasi matematis siswa kelas IX B SMP Negeri 2 Sleman. Seminar Nasional Matematika Dan Pendidikan Matematika, 377.

Akar, E. (2005). Effectiveness of 5E learning cycle model on students’ understanding of acid-base concepts. Middle East Technical University.

Aliyyah, R. R., Rachmadtullah, R., Samsudin, A., Syaodih, E., Nurtanto, M., & Tambunan, A. R. S. (2020). The perceptions of primary school teachers of online learning during the COVID-19 pandemic period: A case study in Indonesia. Journal of Ethnic and Cultural Studies, 7(2), 90–109. https://doi.org/10.29333/ejecs/388

Amineh, R. J., & Asl, H. D. (2015). Review of constructivism and social constructivism. Journal of Social Sciences, Literature and Languages, 1(1), 9–16.

Ausubel, D. . (1968). Educational Psychology-a Cognitive View. Holt, Rinehart and Winston, Inc.,.

Bada, S. O., & Olusegun, S. (2015). Constructivism learning theory: A paradigm for teaching and learning. Journal of Research & Method in Education, 5(6), 66–70. https://doi.org/10.4172/2151-6200.1000200

Balci, S., Cakiroglu, J., & Tekkaya, C. (2006). Engagement, exploration, explanation, extension, and evaluation (5E) learning cycle and conceptual change text as learning tools. Biochemistry and Molecular Biology Education, 34(3), 199–203.

Balta, N., & Sarac, H. (2016). The Effect of 7E Learning Cycle on Learning in Science Teaching: A Meta-Analysis Study. European Journal of Educational Research, 5(2), 61–72.

Boylan, C. (1988). Enhancing learning in science. Research in Science & Technological Education, 6(2), 205–217.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10–13.

Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19.

Castro, C. S. (1998). Teaching probability for conceptual change la enseñanza de la probabilidad por cambio conceptual. Educational Studies in Mathematics, 35(3), 233–254.

Ceylan, E., & Geban, O. (2009). Facilitating conceptual change in understanding state of matter and solubility concepts by using 5E learning cycle model. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 36(36).

Chen, Y. T., & Wang, J. H. (2016). Analyzing with Posner’s Conceptual Change Model and Toulmin’s Model of Argumentative Demonstration in Senior High School Students’ Mathematic Learning. International Journal of Information and Education Technology, 6(6), 457.

Chow, T.-C., & Treagust, D. (2013). An intervention study using cognitive conflict to foster conceptual change. Journal of Science and Mathematics Education in Southeast Asia, 36(1), 44–64.

Cobern, W. W. (2012). Contextual constructivism: The impact of culture on the learning and teaching of science. In The Practice of Constructivism in Science Education. Routledge. https://doi.org/10.4324/9780203053409-9

Dixon, N. M. (2017). The organizational learning cycle: How we can learn collectively. Routledge. https://doi.org/10.4324/9781315554945

Duran, E., Duran, L., Haney, J., & Scheuermann, A. (2011). A learning cycle for all students. The Science Teacher, 78(3), 56.

Firmansyah B, & Gradini, E. (2018). Pemahaman Matematis Siswa Dalam Pembelajaran Persamaan Linear Satu Variabel Menggunakan ELPSA Framework. Numeracy, 5(2), 236–248.

Fitriana, N., Muhandaz, R., & Risnawati, R. (2019). Pengembangan Modul Matematika Berbasis Learning Cycle 5E untuk Memfasilitasi Kemampuan Pemecahan Masalah Matematis Siswa Sekolah Menengah Pertama (SMP). JURING (Journal for Research in Mathematics Learning), 2(1), 21–31.

Flake, J. K., Barron, K. E., Hulleman, C., McCoach, B. D., & Welsh, M. E. (2015). Measuring cost: The forgotten component of expectancy-value theory. Contemporary Educational Psychology, 41, 232–244.

Goldston, M. J., Day, J. B., Sundberg, C., & Dantzler, J. (2010). Psychometric analysis of a 5E learning cycle lesson plan assessment instrument. International Journal of Science and Mathematics Education, 8(4), 633–648.

Gradini, E, & Bahri, F. (2018). Developing mathematics teaching tool using ELPSA. Journal of Physics: Conference Series, 1088(1), 12049.

Gradini, Ega. (2016). Miskonsepsi Dalam Pembelajaran Matematika Sekolah Dasar Di Dataran Tinggi Gayo. Jurnal Numecary, 3(2), 52–60.

Gregory, R. J. (2011). Psychological Testing: History, Principles, and Applications (7th editio). Pearson.

Hadi, S., & Kasum, M. U. (2015). Pemahaman konsep matematika siswa SMP melalui penerapan model pembelajaran kooperatif tipe memeriksa berpasangan (Pair Checks). Edu-Mat: Jurnal Pendidikan Matematika, 3(1).

Halim, A., Mahzum, E., Yacob, M., Irwandi, I., & Halim, L. (2021). The impact of narrative feedback, e-learning modules and realistic video and the reduction of misconception. Education Sciences, 11(4), 158.

Herrmann-Abell, C. F., & DeBoer, G. E. (2011). Using distractor-driven standards-based multiple-choice assessments and Rasch modeling to investigate hierarchies of chemistry misconceptions and detect structural problems with individual items. Chemistry Education Research and Practice, 12(2), 184–192.

Jack, G. U. (2017). The effect of learning cycle constructivist-based approach on students academic achievement and attitude towards chemistry in secondary schools in north-eastern part of Nigeria. Educational Research and Reviews, 12(7), 456–466.

Jensen, J. L., Kummer, T. A., & Godoy, P. D. d M. (2015). Improvements from a flipped classroom may simply be the fruits of active learning. CBE—Life Sciences Education, 14(1), ar5.

Khashan, K. (2016). The Effectiveness of Using the 7E’s Learning Cycle Strategy on the Immediate and Delayed Mathematics Achievement and the Longitudinal Impact of Learning among Preparatory Year Students at King Saud University (KSU). Journal of Education and Practice, 7(36), 40–52.

Konak, A., Clark, T. K., & Nasereddin, M. (2014). Using Kolb’s Experiential Learning Cycle to improve student learning in virtual computer laboratories. Computers & Education, 72, 11–22.

Koparan, T., & Güven, B. (2015). The effect of project-based learning on students’ statistical literacy levels for data representation. In International Journal of Mathematical Education in Science and Technology (Vol. 46, Issue 5, pp. 658–686). Informa UK Limited. https://doi.org/10.1080/0020739x.2014.995242

Larkin, K., & Jorgensen, R. (2016). ‘I hate maths: why do we need to do maths?’Using iPad video diaries to investigate attitudes and emotions towards mathematics in year 3 and year 6 students. International Journal of Science and Mathematics Education, 14(5), 925–944.

Laurillard, D. (2013). Teaching as a design science: Building pedagogical patterns for learning and technology. Routledge. https://doi.org/10.4324/9780203125083

Leinhardt, G. (2019). On teaching. Routledge. https://doi.org/10.1177/108056998404700412

Liljedahl, P. (2011). The theory of conceptual change as a theory for changing conceptions. Nordic Studies in Mathematics Education, 16(1–2), 101–124.

Lukito, A. (2018). Effectiveness of Cooperative Learning Instructional Tools With Predict-Observe-Explain Strategy on the Topic of Cuboid and Cube Volume. Journal of Physics: Conference Series, 947(1), 12052. https://doi.org/10.1088/1742-6596/947/1/012052

Merenluoto, K., & Lehtinen, E. (2004). Number concept and conceptual change: towards a systemic model of the processes of change. Learning and Instruction, 14(5), 519–534.

MilenkovicÌ, D. D., Hrin, T. N., Segedinac, M. D., & Horvat, S. (2016). Development of a three-tier test as a valid diagnostic tool for identification of misconceptions related to carbohydrates. Journal of Chemical Education, 93(9), 1514–1520.

Nieveen, N., & Folmer, E. (2013). Formative Evaluation in Educational Design Research. In T. Plomp & N. Nieveen (Eds.), Netherlands Institute for Curriculum Development: SLO (pp. 152–169). Netherlands Institute for Curriculum Development: SLO. http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ815766

Oktoviani, V., Widoyani, W. L., & Ferdianto, F. (2019). Analisis kemampuan pemahaman matematis siswa SMP pada materi sistem persamaan linear dua variabel. Edumatica: Jurnal Pendidikan Matematika, 9(1), 39–46.

Piyayodilokchai, H., Panjaburee, P., Laosinchai, P., Ketpichainarong, W., & Ruenwongsa, P. (2013). A 5E learning cycle approach–based, multimedia-supplemented instructional unit for structured query language. Journal of Educational Technology & Society, 16(4), 146–159.

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207

Pratiwi, D. D. (2016). Pembelajaran learning cycle 5E berbantuan geogebra terhadap kemampuan pemahaman konsep matematis. Al-Jabar: Jurnal Pendidikan Matematika, 7(2), 191–202.

Priyadi, R., Yuliana, I., & Kusairi, S. (2021). Using the 5E learning cycle with formative e-assessment to enhancement students’ concept. AIP Conference Proceedings, 2330(1), 50007.

Putra, F., Nur Kholifah, I. Y., Subali, B., & Rusilowati, A. (2018). 5E-learning cycle strategy: Increasing conceptual understanding and learning motivation. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(2), 171.

Putra, I. W. E., Sadia, I. W., & Suastra, I. W. (2014). Pengaruh model pembelajaran perubahan konseptual terhadap pemahaman konsep siswa ditinjau dari gaya kognitif. Jurnal Pendidikan Dan Pembelajaran IPA Indonesia, 4(1).

Rahman, A. A. (2018). Penerapan pendekatan Realistic Mathematic Education (RME) pada materi statistika untuk meningkatkan pemahaman konsep dan prestasi belajar siswa. GENTA MULIA: Jurnal Ilmiah Pendidikan, 8(2).

Rahmi, R., Febriana, R., & Putri, G. E. (2020). Pengaruh Self-Efficacy terhadap Pemahaman Konsep Matematika Siswa Pada Pembelajaran Model Discovery Learning. Edumatica: Jurnal Pendidikan Matematika, 10(01), 27–34. https://doi.org/10.24269/ed.v1i1.165

Rebich, S., & Gautier, C. (2005). Concept mapping to reveal prior knowledge and conceptual change in a mock summit course on global climate change. Journal of Geoscience Education, 53(4), 355–365.

Resnick, L. B. (1983). Mathematics and science learning: A new conception. Science, 220(4596), 477–478.

Rodriguez, S., Allen, K., Harron, J., & Qadri, S. A. (2019). Making and the 5E learning cycle. The Science Teacher, 86(5), 48–55.

Schoenfeld, A. H. (2014). Mathematical problem solving. Elsevier.

Setiawan, I. W. P., Suartama, I. K., & Putri, D. A. W. M. (2017). Pengaruh Model Pembelajaran Learning Cycle 5e Berbantuan Mind Mapping Terhadap Hasil Belajar Matematika. Mimbar PGSD Undiksha, 5(2).

Skemp, R. R. (2012). The psychology of learning mathematics: Expanded American edition. Routledge.

Sniadou, S. V. . (2013). Conceptual change research: An introduction. In International handbook of research on conceptual change (pp. 13–20). Routledge.

Sriyanti, I. (2021). Sikap Siswa dalam Belajar Matematika Melalui Model Pembelajaran Learning Cycle 5E. Pasundan Journal of Mathematics Education Jurnal Pendidikan Matematika, 11(1), 36–49.

Stanley, D. I. (2015). Ausubel ’ s Learning Theory : An Approach To Teaching Higher useful. The High School Journal, 82(1), 35–42. http://www.jstor.org/stable/40364708

Stapleton, L., & Stefaniak, J. (2019). Cognitive constructivism: Revisiting Jerome Bruner’s influence on instructional design practices. TechTrends, 63(1), 4–5. https://doi.org/10.1007/s11528-018-0356-8

Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college developmental mathematics students understand about mathematics. MathAMATYC Educator, 1(3), 4–16.

Strike, K. A. (1983). Misconceptions and conceptual change: Philosophical reflections on the research program. Proceedings of the International Seminar on Misconceptions in Science and Mathematics, 1.

Sungur, S., Tekkaya, C., & Geban, Ö. (2001). The contribution of conceptual change texts accompanied by concept mapping to students’ understanding of the human circulatory system. School Science and Mathematics, 101(2), 91–101.

Thiagarajan, S., Semmel, D. S., & Semmel, M. I. (1974). Instructional Development for Training Teachers of Exceptional Children: A Sourcebook. In iCenter for Innovation in Teaching the Handicapped. Indiana University, Bllomington. https://doi.org/10.1016/0022-4405(76)90066-2

Tomkins, L., & Ulus, E. (2016). ‘Oh, was that “experiential learning�!’Spaces, synergies and surprises with Kolb’s learning cycle. Management Learning, 47(2), 158–178.

Tuna, A., & Kacar, A. (2013). The effect of 5E learning cycle model in teaching trigonometry on students’ academic achievement and the permanence of their knowledge. International Journal on New Trends in Education and Their Implications, 4(1), 73–87.

Vosniadou, S., Pnevmatikos, D., Makris, N., Eikospentaki, K., Lepenioti, D., Chountala, A., & Kyrianakis, G. (2015). Executive Functions and Conceptual Change in Science and Mathematics Learning. CogSci.

Vosniadou, S., & Skopeliti, I. (2014). Conceptual change from the framework theory side of the fence. Science & Education, 23(7), 1427–1445. https://doi.org/10.1007/s11191-013-9640-3

Wilson, B. G. (2012). Constructivism in practical and historical context. In B. Reiser & J. Dempsey (Eds.), Trends and issues in instructional design and technology (Vol. 3, pp. 45–52). Pearson Education Boston, MA.

Yilmaz, D., Tekkaya, C., & Sungur, S. (2011). The comparative effects of prediction/discussionâ€based learning cycle, conceptual change text, and traditional instructions on student understanding of genetics. International Journal of Science Education, 33(5), 607–628.

Downloads

Published

2022-08-31

How to Cite

Gradini, E., & Susanti, S. (2022). Development of Learning Cycle 5E-Based Teaching Tools to Facilitate Students’ Conceptual Changes in Mathematics Learning. Edumatica : Jurnal Pendidikan Matematika, 12(02), 88-101. https://doi.org/10.22437/edumatica.v12i02.16933