MICRO RNA AS KEY REGULATORS IN ALLERGIC DISEASES: EPIGENETIC MECHANISMS AND DIAGNOSTIC POTENTIAL
DOI:
https://doi.org/10.22437/jiituj.v9i2.39820Keywords:
Allergic Rhinitis, Atopic Dermatitis, Bronchial Asthma, Hypersensitivity, Transcription Factors, UrticariaAbstract
Epigenetic therapy represents a promising approach for treating allergic diseases, with microRNAs (miRs) playing a crucial role as regulatory molecules in the immune response. The aim of this study was to systematize data on miRs to elucidate the molecular mechanisms of pathogenesis in allergic diseases. A meta-analysis of 61 studies published between 2017 and 2024 was conducted, focusing on specific miRs, their targets, biochemical interactions, model organisms, and health impacts related to different allergic diseases. The study identified key miRs such as miR-21, miR-151A, miR-155, miR-202-5p, and miR-375, which regulate inflammatory processes in allergic asthma, allergic rhinitis, atopic dermatitis, and urticaria. miRs such as miR-143-3p, miR-146a, and miR-221 have dual roles in modulating inflammation, depending on the tissue and disease stage. Additionally, miRs influence the differentiation of macrophages and T-helper cells, and the production of pro- and anti-inflammatory cytokines, which are critical to the pathogenesis of allergic diseases. Specific diagnostic markers were proposed for each disease, including miR-126, miR-133a, and miR-203 for asthma and atopic dermatitis. This analysis highlights the complex role of miRs in regulating allergic responses, offering potential therapeutic targets for miR-based interventions. The findings suggest that miRs could serve as biomarkers for diagnosis and prognosis of allergic diseases. Furthermore, the ability of miRs to both exacerbate and attenuate inflammation underscores their potential as therapeutic tools in precision medicine. The novelty of this study lies in the comprehensive synthesis of miR involvement in allergic diseases, providing a clearer understanding of their dual regulatory roles.
Downloads
References
Adamczyk, P., Narozna, B., Szczepankiewicz, A., Bręborowicz, A., Pucher, B., Kotowski, M., Sroczyński, J., Kałużna-Młynarczyk, A., & Szydłowski, J. (2021). Decreased miRNA-320e correlates with allergy in children with otitis media with effusion. Auris, Nasus, Larynx, 48(6), 1061–1066. https://doi.org/10.1016/j.anl.2021.03.003
Akbari Dilmaghnai, N., Shoorei, H., Sharifi, G., Mohaqiq, M., Majidpoor, J., Dinger, M. E., Taheri, M., & Ghafouri-Fard, S. (2021). Non-coding RNAs modulate function of extracellular matrix proteins. Biomedicine & Pharmacotherapy, 136, 111240. https://doi.org/10.1016/j.biopha.2021.111240
Alhamwe, B. A., Potaczek, D., Miethe, S., Alhamdan, F., Hintz, L., Magomedov, A., & Garn, H. (2021). Extracellular vesicles and asthma-mode than just a co-existence. International Journal of Molecular Sciences, 22(9), 4984. https://doi.org/10.3390/ijms22094984
Asniwita, A., Novalina, N., Syarif, M., Bestari, A. V., & Obura, B. O. (2024). Exploration of indigenous plant growth promoting fungi (PGPF) as biological control agents and biofertilizer. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 240–250. https://doi.org/10.22437/jiituj.v8i1.31783
Beheshti, R., Halstead, S., McKeone, D., & Hicks, S. D. (2022). Understanding immunological origins of atopic dermatitis through multi-omic analysis. Pediatric Allergy and Immunology, 33(6), e13817. https://doi.org/10.1111/pai.13817
Benincasa, G., DeMeo, D., Glass, K., Silverman, E. K., & Napoli, C. (2021). Epigenetics and pulmonary diseases in the horizon of precision medicine: A review. European Respiratory Journal, 57(6), 2003406. https://doi.org/10.1183/13993003.03406-2020
Cañas, J. A., Rodrigo-Muñoz, J. M., Sastre, B., Gil-Martinez, M., Redondo, N., & Del Pozo, V. (2021). MicroRNAs as potential regulators of immune response networks in asthma and chronic obstructive pulmonary disease. Frontiers in Immunology, 11, 608666. https://doi.org/10.3389/fimmu.2020.608666
Castro, R. (2025). The effects of chemistry virtual laboratories in academic achievement of secondary level learners: A meta-analysis. Integrated Science Education Journal, 6(1), 24-37. https://doi.org/10.37251/isej.v6i1.1379
Cay, P., Singer, C. A., & Ba, M. A. (2022). Gene network analysis for identification of microRNA biomarkers for asthma. Respiratory Research, 23(1), 378. https://doi.org/10.1186/s12931-022-02304-2
Chen, H., Xu, X., Cheng, S., Xu, Y., Xuefei, Q., Cao, Y., Xie, J., Wang, C. Y., Xu, Y., & Xiong, W. (2017). Directed against microRNA-155 delivered by a lentiviral vector attenuates asthmatic features in a mouse model of allergic asthma. Experimental and Therapeutic Medicine, 14(5), 4391–4396. https://doi.org/10.3892/etm.2017.5093
Chiba, Y., Ando, Y., Kato, Y., Hanazaki, M., & Sakai, H. (2022). Down-regulation of miR-140-3p is a cause of the interlukin-13-induced up-regulation of RhoA protein in bronchial smooth muscle cells. Small GTPases, 13(1), 1–6. https://doi.org/10.1080/21541248.2021.1872318
Chulenbayeva, L., Ilderbayev, O., Suleymeneva, D., Kaliyeva, A., Kabdykanov, S., Nurgaziyev, M., Nurgozhina, A., Sergazy, S., Kozhakhmetov, S., & Kushugulova, A. (2022). Prolonged Inhalation Exposure to Coal Dust on Irradiated Rats and Consequences. Scientific World Journal, 2022, 8824275. https://doi.org/10.1155/2022/8824275
Dmitrova, E., Smiyan, O., Holubnycha, V., Smiian, K., Bynda, T., Reznychenko, Y., Vysotsky, I., Vasylieva, O., Plakhuta, V., Manko, Y., Havrylenko, A., & Syadrista, Y. (2021). State of immunity in preschoolers with acute respiratory viral infections associated with adenoid vegetations. Proceedings of the Shevchenko Scientific Society. Medical Sciences, 65(2), 174-180. https://doi.org/10.25040/NTSH2021.02.17
Dong, J., Sun, D., & Lu, F. (2021). Association of two polymorphisms of miRNA-146a rs2910164 (G>C) and miRNA-499 rs3746444 (T>C) with asthma: A meta-analysis. Journal of Asthma, 58(8), 995–1002. https://doi.org/10.1080/02770903.2020.1759085
Duan, W., Huang, J., Wasti, B., Chen, Z., Yuan, Y., He, Y., Li, D., Jia, J., Liu, S., Liu, Y., Ma, L., Zeng, Q., Zhu, L., Li, J., Zhang, X., & Xiang, X. (2023). mir-146a-3p as a potential therapeutic by targeting MBD2 to mediate Th17 differentiation in Th17 predominant neutrophilic severe asthma. Clinical and Experimental Medicine, 26(6), 2839–2854. https://doi.org/10.1007/s10238-023-01033-0
Elpianora, E., Berou, M., Kong, X., Hun, K., & Azadegan, E. (2024). Fourth order runge-kutta and gill methods in numerical analysis of predator-prey models. Interval: Indonesian Journal of Mathematical Education, 2(2), 164-177. https://doi.org/10.37251/ijome.v2i2.1366
El-Korashi, L. A., Nafea, O. E., Nafea, A. E., Elkholy, B. M., Elhawy, L. L., & Abdelhadi, A. A. (2024). MicroRNA-155 is a potential predictive tool for atopic dermatitis severity in children: A preliminary study. Egyptian Journal of Immunology, 31(3), 131–139. https://doi.org/10.55133/eji.310313
Farmanzadeh, A., Qujeq, D., & Yousefi, T. (2022). The interaction network of microRNAs with cytokines and signaling pathways in allergic asthma. MicroRNA, 11(2), 104–117. https://doi.org/10.2174/2211536611666220428134324
Febriansyah, F., Lijaya, A., Rukmini, R., Amallia, R. H. T., Teristiandi, N., Saputra, A., & Soleha, S. (2024). Evaluating the bioconcentration factors (BCF) and estimated daily intake (EDI) of heavy metals in lime plants (citrus aurantifolia) in small scale gold ore processing areas. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 203–211. https://doi.org/10.22437/jiituj.v8i1.32596
Flajnik, M. F., Singh, N. J., & Holland, S. M. (2022). Paul’s fundamental immunology. Philadelphia: Lippincott Williams & Wilkins.
Gautam, Y., Johansson, E., & Mersha, T. B. (2022). Multi-omics profiling approach to asthma: An evolving paradigm. Journal of Personalized Medicine, 12(1), 66. https://doi.org/10.3390/jpm12010066
Ghafouri-Fard, S., Shoorei, H., Taheri, M., & Sanak, M. (2020). Emerging role of non-coding RNAs in allergic disorders. Biomedicine & Pharmacotherapy, 130, 110615. https://doi.org/10.1016/j.biopha.2020.110615
Gu, C., Li, Y., Wu, J., & Xu, J. (2017). IFN-γ-induced microRNA-29b up-regulation contributes to keratinocyte apoptosis in atopic dermatitis through inhibiting Bcl2L2. International Journal of Clinical and Experimental Pathology, 10(9), 10117–10126.
Habib, N., Pasha, M. A., & Tang, D. D. (2022). Current understanding of asthma pathogenesis and biomarkers. Cells, 11(17), 2764. https://doi.org/10.3390/cells11172764
Hanoum, N. A., Villaverde, K., Saputra, Y., Nuhuyeva, Åəhla, & Ye, T. (2024). Design and development of tempe fermentation tool based on fuzzy method to determine tempe maturity level. Journal of Educational Technology and Learning Creativity, 2(2), 235-255. https://doi.org/10.37251/jetlc.v2i2.1418
Hartmane, I. (2024). Study of Genetic Mutations and Their Association With the Development of Atopic Dermatitis and Other Skin Diseases. Plastic And Aesthetic Nursing, 44(3), 200-209. https://doi.org/10.1097/PSN.0000000000000564
Hartmane, I., Ivdra, I., Mikaþâns, I., & Bondare-Ansberga, V. (2021). Correlation of immunological and clinical changes in psoriasis patients treated with tumour necrosis factor-alpha (tnf-α) blocking biologic drugs: one-year dynamic observation. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 75(5), 357-363. https://doi.org/10.2478/prolas-2021-0052
He, P., Ni, J., Zhao, H., & Jin, X. (2017). Diagnostic value of miR-221 and miR-142-3p expressions of allergic rhinitis and miR-221 level is positively correlated with disease severity. International Journal of Clinical and Experimental Medicine, 10(5), 7834–7842.
Hicks, S. D., Beheshti, R., Chandran, D., Warren, K., & Confair, A. (2022). Infant consumption of microRNA miR-375 in human milk lipids is associated with protection from atopy. American Journal of Clinical Nutrition, 116(6), 1654–1662. https://doi.org/10.1093/ajcn/nqac266
Hur, J., Rhee, C. K., Lee, S. Y., Kim, Y. K., & Kang, J. Y. (2021). MicroRNA-21 inhibition attenuates airway inflammation and remodeling by modulating the transforming growth factor β-Smad7 pathway. Korean Journal of Internal Medicine, 36(3), 706–720. https://doi.org/10.3904/kjim.2020.132
Hussain, S.-R. A., & Grayson, M. H. (2022). Chronic allergy signaling: Is it all stressed-out mitochondria? Faculty Reviews, 11, 37. https://doi.org/10.12703/r/11-37
Jia, M., Chu, C., & Wang, M. (2018). Correlation of microRNA profiles with disease risk and severity of allergic rhinitis. International Journal of Clinical and Experimental Pathology, 11(3), 1791–1802.
Jin, P., Zhang, H., Zhu, X., Sun, K., Jiang, T., Shi, L., Zhi, L., & Zhang, H. (2022). Bioinformatics analysis of mRNA profiles and identification of microRNA-mRNA network in CD4+ T cells in seasonal allergic rhinitis. Journal of International Medical Research, 50(8), 3000605221113918. https://doi.org/10.1177/03000605221113918
Karstarli Bakay, O. S., Demir, B., Cicek, D., Erol, D., Aşçı Toraman, Z., Gural, Y., & Maurer, M. (2023). In chronic spontaneous utricaria, IgE and C-reactive protein are linked to distinct microRNAs and interleukin-31. Clinical and Translational Allergy, 13(8), e12290. https://doi.org/10.1002/clt2.12290
Khosrojerdi, M., Azad, F. J., Yadegari, Y., Ahanchian, H., & Azimian, A. (2024). The role of microRNAs in atopic dermatitis. Non-coding RNA Research, 9(4), 1033–1039. https://doi.org/10.1016/j.ncrna.2024.05.012
Kim, J. Y., Stevens, P., Karpurapu, M., Lee, H., Englert, J. A., Yan, P., Lee, T. J., Pabla, N., Pietrzak, M., Park, G. Y., Christman, J. W., & Chung, S (2022). Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Frontiers in Immunology, 13, 943554. https://doi.org/10.3389/fimmu.2022.943554
Komilova, N., Egamkulov, K., Hamroyev, M., Khalilova, K., & Zaynutdinova, D. (2023). The impact of urban air pollution on human health. Medicni Perspektivi, 28(3), 170-179. https://doi.org/10.26641/2307-0404.2023.3.289221
Komilova, N., Karshibaeva, L., Egamberdiyeva, U., & Egamkulov, K. (2024). Territorial Analysis of the Nosoecological Situation and the Health of the Population of the Syrdarya Region. Universal Journal of Public Health, 12(2), 207-217. https://doi.org/10.13189/ujph.2024.120204
Koniah, E., Wulandari, C., & Setiani, L. A. (2021). Analysis of drug prescribing at the outpatient unit of clinic x, bogor regency, for the period of September - November 2020. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 5(2), 161–171. https://doi.org/10.22437/jiituj.v5i2.15896
Langwiński, W., Szczepankiewicz, D., Narożna, B., Stegmayr, J., Wagner, D., Alsafadi, H., Lindstedt, S., Stachowiak, Z., Nowakowska, J., Skrzypski, M., & Szczepankiewicz, A. (2022). Allergic inflammation in lungs and nasal epithelium of rat model is regulated by tissue-specific miRNA expression. Molecular Immunology, 147, 115–125. https://doi.org/10.1016/j.molimm.2022.04.017
Lee, H. Y., Hur, J., Kang, J. Y., Rhee, C. K., & Lee, S. Y. (2021). MicroRNA-21 inhibition suppresses alveolar M2 macrophages in an ovalbumin-induced allergic asthma mice model. Allergy, Asthma & Immunology Research, 13(2), 312–329. https://doi.org/10.4168/aair.2021.13.2.312
Li, X., Yang, N., Cheng, Q., Zhang, H., Liu, F., & Shang, Y. (2021). MiR-21-5p in macrophage-derived exosomes targets Smad7 to promote epithelial mesenchymal transition of airway epithelial cells. Journal of Asthma and Allergy, 14, 513–524. https://doi.org/10.2147/jaa.s307165
Liu, H.-C., Liao, Y., & Liu, C.-Q. (2018). miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway. European Review for Medical and Pharmacological Sciences, 22(23), 8076–8083. https://doi.org/10.26355/eurrev_201812_16497
Liu, Y., Huo, S.-G., Xu, L., Che, Y.-Y., Jiang S.-Y., Zhu, L., Zhao, M., & Teng, Y.-C. (2023). MiR-135b alleviates airway inflammation in asthmatic children and experimental mice with asthma via regulating CXCL12. Immunological Investigations, 51(3), 496–510. https://doi.org/10.1080/08820139.2020.1841221
Lu, L., Zheng, G., & Lin, Y. (2023). Blood miR-21 and miR-26 tailor a good diagnostic model for childhood asthma. Cellular and Molecular Biology, 69(12), 33–37. https://doi.org/10.14715/cmb/2023.69.12.6
Lu, T. X, & Rothenberg, M.E. (2018). MicroRNA. Journal of Allergy and Clinical Immunology, 141(4), 1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034
Mao, Z., Ding, Z., Liu, Z., Shi, Y., & Zhang, Q. (2024). miR-21-5p modulates airway inflammation and epithelial-mesenchymal transition processes in a mouse model of combined allergic rhinitis and asthma syndrome. International Archives of Allergy and Immunology, 185(8), 775–785. https://doi.org/10.1159/000538252
Martins, J. N. R., Ensinas, P., Chan, F., Babayeva, N., von Zuben, M., Berti, L., et al. (2024). Worldwide Prevalence of Single-rooted with a Single Root Canal and Four-rooted Configurations in Maxillary Molars: A Multi-center Cross-sectional Study with Meta-analysis. Journal of Endodontics, 50(9), 1254-1272. https://doi.org/10.1016/j.joen.2024.06.010
Melinda, S., Feizi, F., & Monfared, P. N. (2024). Transforming religious learning with macromedia flash 8: Improving students’ understanding of the material on faith in the apostles. Journal of Educational Technology and Learning Creativity, 2(2), 201-208. https://doi.org/10.37251/jetlc.v2i2.1100
Melnychaiko, I., & Andreychyn, S. (2023). Biological therapy of severe bronchial asthma. Bulletin of Medical and Biological Research, 5(2), 86–92. https://doi.org/10.61751/bmbr.2706-6290.2023.2.86
Mialiuk, O. P., Babiak, O. V., Sabadyshyn, R. O., Danyliuk, A. P., & Pasternak, A. A. (2021). Changes in lipid peroxidation and antioxidant system parameters in the liver of rats using mexidol in experimental obesity and bronchial asthma. Bulletin of Medical and Biological Research, 3(4), 64–68. https://doi.org/10.11603/bmbr.2706-6290.2021.4.12566
Miharja, M. A., Bulayi, M., & Triet, L. V. M. (2024). Realistic mathematics education: Unlocking problem-solving potential in students. Interval: Indonesian Journal of Mathematical Education, 2(1), 50-59. https://doi.org/10.37251/ijome.v2i1.1344
Mijač, S., Banić, I., Genc, A.-M., Lipej, M., & Turkalj, M. (2024). The effects of environmental exposure on epigenetic modifications in allergic diseases. Medicina, 60(1), 110. https://doi.org/10.3390/medicina60010110
Mohammed, Z., McHale, C., Kubinak, J. L., Dryer, S., & Gomez, G. (2022). miR-155 is a positive regulator of FcεR1-induced cyclooxygenase-2 expression and cytokine production in mast cells. Frontiers in Allergy, 3, 835776. https://doi.org/10.3389/falgy.2022.835776
Oktarina, Y., Nurhusna, N., & Nurlinawati, N. (2018). Empowerment of health cadres through asthma exercise and buteyko breathing technique training as an effort to reduce recurrence and alleviate asthma symptoms in asthma patients at olak kemang community health center and simpang iv sipin community health center. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 2(2), 115–120. https://doi.org/10.22437/jiituj.v2i2.5982
Paul, S., Ruiz-Manriquez, L. M., Ledesma-Pacheco, S. J., Benavides-Aguilar, J. A., Torres-Copado, A., Morales-Rodríguez, J. I., De Donato, M., & Srivastava, A. (2021). Roles of microRNAs in chronic pediatric diseases and their potential biomarkers: A review. Archives of Biochemistry and Biophysics, 699, 108763. https://doi.org/10.1016/j.abb.2021.108763
Pokryshko, A., & Dutchak, O. (2024). Comparison of the effectiveness of training methods for medical practitioners in Ukraine regarding anaphylaxis. International Journal of Medicine and Medical Research, 10(1), 40–46. https://doi.org/10.61751/ijmmr/1.2024.40
Potaczek, D. P., Alashkar Alhamwe, B., Miethe, S., & Garn H. (2022). Epigenetic mechanisms in allergy development and prevention. Handbook of Experimental Pharmacology, 268, 331–357. https://doi.org/10.1007/164_2021_475
Quan, L., Ren, G., Liu, L., Huang, W., & Li, M. (2022). Circular RNA circ_002594 regulates PDGF-BB-induced proliferation and migration of human airway smooth muscle cells via sponging miR-139-5p/TRIM8 in asthma. Autoimmunity, 55(5), 339–350. https://doi.org/10.1080/08916934.2022.2062596
Rahbarghazi, R., Keyhanmanesh, R., Rezaie, J., Mirershadi, F., Heiran, H., Saghaei Bagheri, H., Saberianpour, S., Rezabakhsh, A., Delkhosh. A., Bagheri, Y., Rajabi, H., & Ahmadi, M. (2021). C-kit+ cells offer hopes in ameliorating asthmatic pathologies via regulation of miRNA-133 and miRNA-126. Iranian Journal of Basic Medical Sciences, 24(3), 369–376. https://doi.org/10.22038/ijbms.2021.49008.11231
Rebane, A. (2015). microRNA and Allergy. Advances in Experimental Medicine and Biology, 888, 331–352. https://doi.org/10.1007/978-3-319-22671-2_17
Rubins, A. Y., Branta, D. K., Hartmane, I. V., Rajevska, A. S., Gutmane, R. A., & Lielbriedis, Y. M. (1992). Multiple carcinoma in patients with psoriasis caused by psoralen- ultraviolet A therapy, natural killer cell insufficiency, or intensified sun exposure? Cutis, 49(6), 430-432. https://pubmed.ncbi.nlm.nih.gov/1628511/
Sharma, R., Tiwari, A., & McGeachie, M. (2022). Recent miRNA research in asthma. Current Allergy and Asthma Reports, 22(12), 231–258. https://doi.org/10.1007/s11882-022-01050-1
Smiyan, O. I., Plakhuta, V. A., Bunda, T. P., & Popov, S. V. (2015). Dynamics of cytokines in infants with acute obstructive bronchitis and thymomegalia. Likars'ka Sprava / Ministerstvo Okhorony Zdorov'ia Ukraïny, 1-2, 81-85. https://pubmed.ncbi.nlm.nih.gov/26118033/
Specjalski, K., Maciejewska, A., Romantowski, J., Pawłowski, R., Jassem, E., & Niedoszytko, M. (2022). miRNA profiles change during grass pollen immunotherapy irrespective of clinical outcome. Immunotherapy, 14(6), 433–444. https://doi.org/10.2217/imt-2021-0217
Syamsurizal, S., Elisma, E., & Pratiwi, P. D. (2024). Breadfruit peel as the most potent radical scavengers for skin protection. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 325-333. https://doi.org/10.22437/jiituj.v8i1.33966
Takamura, H., Nakayama, Y., Ito, H., Katayama, T., Fraser, P. E., & Matsuzaki, S. (2022). SUMO1 modification of Tau in progressive supranuclear palsy. Molecular Neurobiology, 59(7), 4419–4435. https://doi.org/10.1007/s12035-022-02734-5
Tazhibayeva, D., Kabdualieva, N., Aitbayeva, Zh., Sengaliy, M., & Niyazbekova, K. (2020). The dynamics of lipoperoxidation processes in the early period after combined effects of a high dose gamma radiation and immobilization stress (experimental research). Georgian Medical News, 302(5), 127-132. https://pubmed.ncbi.nlm.nih.gov/32672704/
Tunçer, F., Şahiner, Ü. M., Ocak, M., Ünsal, H., Soyer, Ö., Şekerel, B. E., & Birben, E. (2022). Comparison of miRNA expression in patients with seasonal and perennial allergic rhinitis and non-atopic asthma. Turkish Journal of Pediatrics, 64(5), 859–868. https://doi.org/10.24953/turkjped.2022.410
Ueta, M., Nishigaki, H., Komai, S., Mizushima, K., Tamagawa-Mineoka, R., Naito, Y., Katoh, N., Sotozono, C., & Kinoshita, S. (2023). Positive regulation of innate immune response by miRNA-let-7a-5p. Frontiers in Genetics, (13), 1025539. https://doi.org/10.3389/fgene.2022.1025539
Wang, L., Liu, X., Song, X., Dong, L., & Liu, D. (2019). MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2. International Archives of Allergy and Immunology, 178(2), 119–127. https://doi.org/10.1159/000493803
Wang, T., Wang, P., Chen, D., Xu, Z., & Yang, L. (2021). circARRDC3 contributes to interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells via the miR-375/KLE4 axis. Molecular Medicine Reports, 23(2), 141. https://doi.org/10.3892/mmr.2020.11780
Wang, Z., Song, Y., Jiang, J., Piao, Y., Li, L., Bai, Q., Xu, C., Liu, H., Li, L., Piao, H., & Yan, G. (2022). MicroRNA-182-5p attenuates asthmatic airway inflammation by targeting NOX4. Frontiers in Immunology, 13, 853848. https://doi.org/10.3389/fimmu.2022.853848
Wangyang, Y., Yi, L., Wang, T., Feng, Y., Liu, G., Li, D., & Zheng, X. (2018). MiR-199a-3p inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via suppressing retinoblastoma 1. Bioscience Reports, 38(6), BSR20180982. https://doi.org/10.1042/bsr20180982
Wardzyńska, A., Pawełczyk, M., Rywaniak, J., Makowska, J. S., Kowalski, M. L., & Chałubiński, M. (2023). miRNA expression in serum and PBMCs isolated from middle-aged and elderly patients during asthma exacerbation. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 131(7), 369–377. https://doi.org/10.1111/apm.13328
Weinder, J., Bartel, S., Kılıç, A., Zissler, U. M., Renz, H., Schwarze, J., Schmidt-Weber, C. B., Maes, T., Rebane, A., Krauss-Etschmann, S., & Rådinger, M. (2021). Spotlight on microRNA in allergy and asthma. Allergy, 76(6), 1661–1678. https://doi.org/10.1111/all.14646
Xiao, L., Jiang, Q., Hu, Q., & Li, Y. (2017). MicroRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3. Cellular Physiology and Biochemistry, 42(3), 901–912. https://doi.org/10.1159/000478645
Yan, F., Meng, W., Ye, S., Zhang, X., Mo, X., Liu, J., Chen, D., & Lin, Y. (2019). MicroRNA-146-a as a potential regulator involved in the pathogenesis of atopic dermatitis. Molecular Medicine Reports, 20(5), 4645–4653. https://doi.org/10.3892/mmr.2019.10695
Yang, Z., Wang, J., Pan, Z., & Zhang, Y. (2018). miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Experimental and Therapeutic Medicine, 15(4), 3781–3790. https://doi.org/10.3892/etm.2018.5907
Yu, Z.-J., Zeng, L., Luo, X.-Q., Geng, X.-R., Xu, R., Chen, K., Yang, G., Luo, X., Liu, Z.-Q., Liu, Z.-G., Liu, D.-B., Yang, P.-C., & Li, H.-B. (2017). Vitamin D3 inhibits microRna-17-92 to promote specific immunotherapy in allergic rhinitis. Scientific Reports, 7, 546. https://doi.org/10.1038/s41598-017-00431-1
Zeng, Q., Liu, W, Luo, R., & Lu, G. (2019). MicroRNA-181a and microRNA-155 are involved in the regulation of the differentiation and function of regulatory T cells in allergic rhinitis children. Pediatric Allergy and Immunology, 30(4), 434–442. https://doi.org/10.1111/pai.13038
Zeng, Y., Zeng, Q., Wen, Y., Li, J., Xiao, H., Yang, C., Luo, R., & Liu, W. (2024). Apolipoprotein A-I inhibited group II innate lymphoid cell response mediated by microRNA-155 in allergic rhinitis. Journal of Allergy and Clinical Immunology, 3(2), 100212. https://doi.org/10.1016/j.jacig.2024.100212
Zhang, Y., Yang, Y., Guo, J., Cui, L., Yang, L., Li, Y., Mou, Y., Jia, C., Zhang, L., & Song, X. (2022). mir-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5B. Allergy, 77(2), 550–558. https://doi.org/10.1111/all.15163
Zhong, Z., Huang, X., Zhang, S., Zheng, S., Cheng, X., Li, R., Wu, D., Mo, L., & Qu, S. (2023). Blocking Notch signalling reverses miR-155-mediated inflammation in allergic rhinitis. International Immunopharmacology, 116, 109832. https://doi.org/10.1016/j.intimp.2023.109832
Zhu, X., He, L., Li, X., Pei, W., Yang, H., Zhong, M., Zhang, M., Lv, K., & Zhang, Y. (2023). LncRNA AK089514/miR-125b-5p/TRAF6 axis mediates macrophage polarization in allergic asthma. BMC Pulmonary Medicine, 23(1), 45. https://doi.org/10.1186/s12890-023-02339-1
Zou, Y., Zhou, Q., & Zhang, Y. (2021). MicroRNA-21 released from mast cells-derived extracellular vesicles drives asthma in mice by potentiating airway inflammation and oxidative stress. American Journal of Translational Research, 13(7), 7475–7491.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Maria Zofia Lisiecka

This work is licensed under a Creative Commons Attribution 4.0 International License.