MICRO RNA AS KEY REGULATORS IN ALLERGIC DISEASES: EPIGENETIC MECHANISMS AND DIAGNOSTIC POTENTIAL

Authors

DOI:

https://doi.org/10.22437/jiituj.v9i2.39820

Keywords:

Allergic Rhinitis, Atopic Dermatitis, Bronchial Asthma, Hypersensitivity, Transcription Factors, Urticaria

Abstract

Epigenetic therapy represents a promising approach for treating allergic diseases, with microRNAs (miRs) playing a crucial role as regulatory molecules in the immune response. The aim of this study was to systematize data on miRs to elucidate the molecular mechanisms of pathogenesis in allergic diseases. A meta-analysis of 61 studies published between 2017 and 2024 was conducted, focusing on specific miRs, their targets, biochemical interactions, model organisms, and health impacts related to different allergic diseases. The study identified key miRs such as miR-21, miR-151A, miR-155, miR-202-5p, and miR-375, which regulate inflammatory processes in allergic asthma, allergic rhinitis, atopic dermatitis, and urticaria. miRs such as miR-143-3p, miR-146a, and miR-221 have dual roles in modulating inflammation, depending on the tissue and disease stage. Additionally, miRs influence the differentiation of macrophages and T-helper cells, and the production of pro- and anti-inflammatory cytokines, which are critical to the pathogenesis of allergic diseases. Specific diagnostic markers were proposed for each disease, including miR-126, miR-133a, and miR-203 for asthma and atopic dermatitis. This analysis highlights the complex role of miRs in regulating allergic responses, offering potential therapeutic targets for miR-based interventions. The findings suggest that miRs could serve as biomarkers for diagnosis and prognosis of allergic diseases. Furthermore, the ability of miRs to both exacerbate and attenuate inflammation underscores their potential as therapeutic tools in precision medicine. The novelty of this study lies in the comprehensive synthesis of miR involvement in allergic diseases, providing a clearer understanding of their dual regulatory roles.

Downloads

Author Biography

Maria Zofia Lisiecka, National Medical Institute of the Ministry of the Interior and Administration

Department of Allergology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Poland

 

References

Adamczyk, P., Narozna, B., Szczepankiewicz, A., Bręborowicz, A., Pucher, B., Kotowski, M., Sroczyński, J., Kałużna-Młynarczyk, A., & Szydłowski, J. (2021). Decreased miRNA-320e correlates with allergy in children with otitis media with effusion. Auris, Nasus, Larynx, 48(6), 1061–1066. https://doi.org/10.1016/j.anl.2021.03.003

Akbari Dilmaghnai, N., Shoorei, H., Sharifi, G., Mohaqiq, M., Majidpoor, J., Dinger, M. E., Taheri, M., & Ghafouri-Fard, S. (2021). Non-coding RNAs modulate function of extracellular matrix proteins. Biomedicine & Pharmacotherapy, 136, 111240. https://doi.org/10.1016/j.biopha.2021.111240

Alhamwe, B. A., Potaczek, D., Miethe, S., Alhamdan, F., Hintz, L., Magomedov, A., & Garn, H. (2021). Extracellular vesicles and asthma-mode than just a co-existence. International Journal of Molecular Sciences, 22(9), 4984. https://doi.org/10.3390/ijms22094984

Asniwita, A., Novalina, N., Syarif, M., Bestari, A. V., & Obura, B. O. (2024). Exploration of indigenous plant growth promoting fungi (PGPF) as biological control agents and biofertilizer. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 240–250. https://doi.org/10.22437/jiituj.v8i1.31783

Beheshti, R., Halstead, S., McKeone, D., & Hicks, S. D. (2022). Understanding immunological origins of atopic dermatitis through multi-omic analysis. Pediatric Allergy and Immunology, 33(6), e13817. https://doi.org/10.1111/pai.13817

Benincasa, G., DeMeo, D., Glass, K., Silverman, E. K., & Napoli, C. (2021). Epigenetics and pulmonary diseases in the horizon of precision medicine: A review. European Respiratory Journal, 57(6), 2003406. https://doi.org/10.1183/13993003.03406-2020

Cañas, J. A., Rodrigo-Muñoz, J. M., Sastre, B., Gil-Martinez, M., Redondo, N., & Del Pozo, V. (2021). MicroRNAs as potential regulators of immune response networks in asthma and chronic obstructive pulmonary disease. Frontiers in Immunology, 11, 608666. https://doi.org/10.3389/fimmu.2020.608666

Castro, R. (2025). The effects of chemistry virtual laboratories in academic achievement of secondary level learners: A meta-analysis. Integrated Science Education Journal, 6(1), 24-37. https://doi.org/10.37251/isej.v6i1.1379

Cay, P., Singer, C. A., & Ba, M. A. (2022). Gene network analysis for identification of microRNA biomarkers for asthma. Respiratory Research, 23(1), 378. https://doi.org/10.1186/s12931-022-02304-2

Chen, H., Xu, X., Cheng, S., Xu, Y., Xuefei, Q., Cao, Y., Xie, J., Wang, C. Y., Xu, Y., & Xiong, W. (2017). Directed against microRNA-155 delivered by a lentiviral vector attenuates asthmatic features in a mouse model of allergic asthma. Experimental and Therapeutic Medicine, 14(5), 4391–4396. https://doi.org/10.3892/etm.2017.5093

Chiba, Y., Ando, Y., Kato, Y., Hanazaki, M., & Sakai, H. (2022). Down-regulation of miR-140-3p is a cause of the interlukin-13-induced up-regulation of RhoA protein in bronchial smooth muscle cells. Small GTPases, 13(1), 1–6. https://doi.org/10.1080/21541248.2021.1872318

Chulenbayeva, L., Ilderbayev, O., Suleymeneva, D., Kaliyeva, A., Kabdykanov, S., Nurgaziyev, M., Nurgozhina, A., Sergazy, S., Kozhakhmetov, S., & Kushugulova, A. (2022). Prolonged Inhalation Exposure to Coal Dust on Irradiated Rats and Consequences. Scientific World Journal, 2022, 8824275. https://doi.org/10.1155/2022/8824275

Dmitrova, E., Smiyan, O., Holubnycha, V., Smiian, K., Bynda, T., Reznychenko, Y., Vysotsky, I., Vasylieva, O., Plakhuta, V., Manko, Y., Havrylenko, A., & Syadrista, Y. (2021). State of immunity in preschoolers with acute respiratory viral infections associated with adenoid vegetations. Proceedings of the Shevchenko Scientific Society. Medical Sciences, 65(2), 174-180. https://doi.org/10.25040/NTSH2021.02.17

Dong, J., Sun, D., & Lu, F. (2021). Association of two polymorphisms of miRNA-146a rs2910164 (G>C) and miRNA-499 rs3746444 (T>C) with asthma: A meta-analysis. Journal of Asthma, 58(8), 995–1002. https://doi.org/10.1080/02770903.2020.1759085

Duan, W., Huang, J., Wasti, B., Chen, Z., Yuan, Y., He, Y., Li, D., Jia, J., Liu, S., Liu, Y., Ma, L., Zeng, Q., Zhu, L., Li, J., Zhang, X., & Xiang, X. (2023). mir-146a-3p as a potential therapeutic by targeting MBD2 to mediate Th17 differentiation in Th17 predominant neutrophilic severe asthma. Clinical and Experimental Medicine, 26(6), 2839–2854. https://doi.org/10.1007/s10238-023-01033-0

Elpianora, E., Berou, M., Kong, X., Hun, K., & Azadegan, E. (2024). Fourth order runge-kutta and gill methods in numerical analysis of predator-prey models. Interval: Indonesian Journal of Mathematical Education, 2(2), 164-177. https://doi.org/10.37251/ijome.v2i2.1366

El-Korashi, L. A., Nafea, O. E., Nafea, A. E., Elkholy, B. M., Elhawy, L. L., & Abdelhadi, A. A. (2024). MicroRNA-155 is a potential predictive tool for atopic dermatitis severity in children: A preliminary study. Egyptian Journal of Immunology, 31(3), 131–139. https://doi.org/10.55133/eji.310313

Farmanzadeh, A., Qujeq, D., & Yousefi, T. (2022). The interaction network of microRNAs with cytokines and signaling pathways in allergic asthma. MicroRNA, 11(2), 104–117. https://doi.org/10.2174/2211536611666220428134324

Febriansyah, F., Lijaya, A., Rukmini, R., Amallia, R. H. T., Teristiandi, N., Saputra, A., & Soleha, S. (2024). Evaluating the bioconcentration factors (BCF) and estimated daily intake (EDI) of heavy metals in lime plants (citrus aurantifolia) in small scale gold ore processing areas. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 203–211. https://doi.org/10.22437/jiituj.v8i1.32596

Flajnik, M. F., Singh, N. J., & Holland, S. M. (2022). Paul’s fundamental immunology. Philadelphia: Lippincott Williams & Wilkins.

Gautam, Y., Johansson, E., & Mersha, T. B. (2022). Multi-omics profiling approach to asthma: An evolving paradigm. Journal of Personalized Medicine, 12(1), 66. https://doi.org/10.3390/jpm12010066

Ghafouri-Fard, S., Shoorei, H., Taheri, M., & Sanak, M. (2020). Emerging role of non-coding RNAs in allergic disorders. Biomedicine & Pharmacotherapy, 130, 110615. https://doi.org/10.1016/j.biopha.2020.110615

Gu, C., Li, Y., Wu, J., & Xu, J. (2017). IFN-γ-induced microRNA-29b up-regulation contributes to keratinocyte apoptosis in atopic dermatitis through inhibiting Bcl2L2. International Journal of Clinical and Experimental Pathology, 10(9), 10117–10126.

Habib, N., Pasha, M. A., & Tang, D. D. (2022). Current understanding of asthma pathogenesis and biomarkers. Cells, 11(17), 2764. https://doi.org/10.3390/cells11172764

Hanoum, N. A., Villaverde, K., Saputra, Y., Nuhuyeva, Åəhla, & Ye, T. (2024). Design and development of tempe fermentation tool based on fuzzy method to determine tempe maturity level. Journal of Educational Technology and Learning Creativity, 2(2), 235-255. https://doi.org/10.37251/jetlc.v2i2.1418

Hartmane, I. (2024). Study of Genetic Mutations and Their Association With the Development of Atopic Dermatitis and Other Skin Diseases. Plastic And Aesthetic Nursing, 44(3), 200-209. https://doi.org/10.1097/PSN.0000000000000564

Hartmane, I., Ivdra, I., Mikaþâns, I., & Bondare-Ansberga, V. (2021). Correlation of immunological and clinical changes in psoriasis patients treated with tumour necrosis factor-alpha (tnf-α) blocking biologic drugs: one-year dynamic observation. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 75(5), 357-363. https://doi.org/10.2478/prolas-2021-0052

He, P., Ni, J., Zhao, H., & Jin, X. (2017). Diagnostic value of miR-221 and miR-142-3p expressions of allergic rhinitis and miR-221 level is positively correlated with disease severity. International Journal of Clinical and Experimental Medicine, 10(5), 7834–7842.

Hicks, S. D., Beheshti, R., Chandran, D., Warren, K., & Confair, A. (2022). Infant consumption of microRNA miR-375 in human milk lipids is associated with protection from atopy. American Journal of Clinical Nutrition, 116(6), 1654–1662. https://doi.org/10.1093/ajcn/nqac266

Hur, J., Rhee, C. K., Lee, S. Y., Kim, Y. K., & Kang, J. Y. (2021). MicroRNA-21 inhibition attenuates airway inflammation and remodeling by modulating the transforming growth factor β-Smad7 pathway. Korean Journal of Internal Medicine, 36(3), 706–720. https://doi.org/10.3904/kjim.2020.132

Hussain, S.-R. A., & Grayson, M. H. (2022). Chronic allergy signaling: Is it all stressed-out mitochondria? Faculty Reviews, 11, 37. https://doi.org/10.12703/r/11-37

Jia, M., Chu, C., & Wang, M. (2018). Correlation of microRNA profiles with disease risk and severity of allergic rhinitis. International Journal of Clinical and Experimental Pathology, 11(3), 1791–1802.

Jin, P., Zhang, H., Zhu, X., Sun, K., Jiang, T., Shi, L., Zhi, L., & Zhang, H. (2022). Bioinformatics analysis of mRNA profiles and identification of microRNA-mRNA network in CD4+ T cells in seasonal allergic rhinitis. Journal of International Medical Research, 50(8), 3000605221113918. https://doi.org/10.1177/03000605221113918

Karstarli Bakay, O. S., Demir, B., Cicek, D., Erol, D., Aşçı Toraman, Z., Gural, Y., & Maurer, M. (2023). In chronic spontaneous utricaria, IgE and C-reactive protein are linked to distinct microRNAs and interleukin-31. Clinical and Translational Allergy, 13(8), e12290. https://doi.org/10.1002/clt2.12290

Khosrojerdi, M., Azad, F. J., Yadegari, Y., Ahanchian, H., & Azimian, A. (2024). The role of microRNAs in atopic dermatitis. Non-coding RNA Research, 9(4), 1033–1039. https://doi.org/10.1016/j.ncrna.2024.05.012

Kim, J. Y., Stevens, P., Karpurapu, M., Lee, H., Englert, J. A., Yan, P., Lee, T. J., Pabla, N., Pietrzak, M., Park, G. Y., Christman, J. W., & Chung, S (2022). Targeting ETosis by miR-155 inhibition mitigates mixed granulocytic asthmatic lung inflammation. Frontiers in Immunology, 13, 943554. https://doi.org/10.3389/fimmu.2022.943554

Komilova, N., Egamkulov, K., Hamroyev, M., Khalilova, K., & Zaynutdinova, D. (2023). The impact of urban air pollution on human health. Medicni Perspektivi, 28(3), 170-179. https://doi.org/10.26641/2307-0404.2023.3.289221

Komilova, N., Karshibaeva, L., Egamberdiyeva, U., & Egamkulov, K. (2024). Territorial Analysis of the Nosoecological Situation and the Health of the Population of the Syrdarya Region. Universal Journal of Public Health, 12(2), 207-217. https://doi.org/10.13189/ujph.2024.120204

Koniah, E., Wulandari, C., & Setiani, L. A. (2021). Analysis of drug prescribing at the outpatient unit of clinic x, bogor regency, for the period of September - November 2020. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 5(2), 161–171. https://doi.org/10.22437/jiituj.v5i2.15896

Langwiński, W., Szczepankiewicz, D., Narożna, B., Stegmayr, J., Wagner, D., Alsafadi, H., Lindstedt, S., Stachowiak, Z., Nowakowska, J., Skrzypski, M., & Szczepankiewicz, A. (2022). Allergic inflammation in lungs and nasal epithelium of rat model is regulated by tissue-specific miRNA expression. Molecular Immunology, 147, 115–125. https://doi.org/10.1016/j.molimm.2022.04.017

Lee, H. Y., Hur, J., Kang, J. Y., Rhee, C. K., & Lee, S. Y. (2021). MicroRNA-21 inhibition suppresses alveolar M2 macrophages in an ovalbumin-induced allergic asthma mice model. Allergy, Asthma & Immunology Research, 13(2), 312–329. https://doi.org/10.4168/aair.2021.13.2.312

Li, X., Yang, N., Cheng, Q., Zhang, H., Liu, F., & Shang, Y. (2021). MiR-21-5p in macrophage-derived exosomes targets Smad7 to promote epithelial mesenchymal transition of airway epithelial cells. Journal of Asthma and Allergy, 14, 513–524. https://doi.org/10.2147/jaa.s307165

Liu, H.-C., Liao, Y., & Liu, C.-Q. (2018). miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway. European Review for Medical and Pharmacological Sciences, 22(23), 8076–8083. https://doi.org/10.26355/eurrev_201812_16497

Liu, Y., Huo, S.-G., Xu, L., Che, Y.-Y., Jiang S.-Y., Zhu, L., Zhao, M., & Teng, Y.-C. (2023). MiR-135b alleviates airway inflammation in asthmatic children and experimental mice with asthma via regulating CXCL12. Immunological Investigations, 51(3), 496–510. https://doi.org/10.1080/08820139.2020.1841221

Lu, L., Zheng, G., & Lin, Y. (2023). Blood miR-21 and miR-26 tailor a good diagnostic model for childhood asthma. Cellular and Molecular Biology, 69(12), 33–37. https://doi.org/10.14715/cmb/2023.69.12.6

Lu, T. X, & Rothenberg, M.E. (2018). MicroRNA. Journal of Allergy and Clinical Immunology, 141(4), 1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

Mao, Z., Ding, Z., Liu, Z., Shi, Y., & Zhang, Q. (2024). miR-21-5p modulates airway inflammation and epithelial-mesenchymal transition processes in a mouse model of combined allergic rhinitis and asthma syndrome. International Archives of Allergy and Immunology, 185(8), 775–785. https://doi.org/10.1159/000538252

Martins, J. N. R., Ensinas, P., Chan, F., Babayeva, N., von Zuben, M., Berti, L., et al. (2024). Worldwide Prevalence of Single-rooted with a Single Root Canal and Four-rooted Configurations in Maxillary Molars: A Multi-center Cross-sectional Study with Meta-analysis. Journal of Endodontics, 50(9), 1254-1272. https://doi.org/10.1016/j.joen.2024.06.010

Melinda, S., Feizi, F., & Monfared, P. N. (2024). Transforming religious learning with macromedia flash 8: Improving students’ understanding of the material on faith in the apostles. Journal of Educational Technology and Learning Creativity, 2(2), 201-208. https://doi.org/10.37251/jetlc.v2i2.1100

Melnychaiko, I., & Andreychyn, S. (2023). Biological therapy of severe bronchial asthma. Bulletin of Medical and Biological Research, 5(2), 86–92. https://doi.org/10.61751/bmbr.2706-6290.2023.2.86

Mialiuk, O. P., Babiak, O. V., Sabadyshyn, R. O., Danyliuk, A. P., & Pasternak, A. A. (2021). Changes in lipid peroxidation and antioxidant system parameters in the liver of rats using mexidol in experimental obesity and bronchial asthma. Bulletin of Medical and Biological Research, 3(4), 64–68. https://doi.org/10.11603/bmbr.2706-6290.2021.4.12566

Miharja, M. A., Bulayi, M., & Triet, L. V. M. (2024). Realistic mathematics education: Unlocking problem-solving potential in students. Interval: Indonesian Journal of Mathematical Education, 2(1), 50-59. https://doi.org/10.37251/ijome.v2i1.1344

Mijač, S., Banić, I., Genc, A.-M., Lipej, M., & Turkalj, M. (2024). The effects of environmental exposure on epigenetic modifications in allergic diseases. Medicina, 60(1), 110. https://doi.org/10.3390/medicina60010110

Mohammed, Z., McHale, C., Kubinak, J. L., Dryer, S., & Gomez, G. (2022). miR-155 is a positive regulator of FcεR1-induced cyclooxygenase-2 expression and cytokine production in mast cells. Frontiers in Allergy, 3, 835776. https://doi.org/10.3389/falgy.2022.835776

Oktarina, Y., Nurhusna, N., & Nurlinawati, N. (2018). Empowerment of health cadres through asthma exercise and buteyko breathing technique training as an effort to reduce recurrence and alleviate asthma symptoms in asthma patients at olak kemang community health center and simpang iv sipin community health center. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 2(2), 115–120. https://doi.org/10.22437/jiituj.v2i2.5982

Paul, S., Ruiz-Manriquez, L. M., Ledesma-Pacheco, S. J., Benavides-Aguilar, J. A., Torres-Copado, A., Morales-Rodríguez, J. I., De Donato, M., & Srivastava, A. (2021). Roles of microRNAs in chronic pediatric diseases and their potential biomarkers: A review. Archives of Biochemistry and Biophysics, 699, 108763. https://doi.org/10.1016/j.abb.2021.108763

Pokryshko, A., & Dutchak, O. (2024). Comparison of the effectiveness of training methods for medical practitioners in Ukraine regarding anaphylaxis. International Journal of Medicine and Medical Research, 10(1), 40–46. https://doi.org/10.61751/ijmmr/1.2024.40

Potaczek, D. P., Alashkar Alhamwe, B., Miethe, S., & Garn H. (2022). Epigenetic mechanisms in allergy development and prevention. Handbook of Experimental Pharmacology, 268, 331–357. https://doi.org/10.1007/164_2021_475

Quan, L., Ren, G., Liu, L., Huang, W., & Li, M. (2022). Circular RNA circ_002594 regulates PDGF-BB-induced proliferation and migration of human airway smooth muscle cells via sponging miR-139-5p/TRIM8 in asthma. Autoimmunity, 55(5), 339–350. https://doi.org/10.1080/08916934.2022.2062596

Rahbarghazi, R., Keyhanmanesh, R., Rezaie, J., Mirershadi, F., Heiran, H., Saghaei Bagheri, H., Saberianpour, S., Rezabakhsh, A., Delkhosh. A., Bagheri, Y., Rajabi, H., & Ahmadi, M. (2021). C-kit+ cells offer hopes in ameliorating asthmatic pathologies via regulation of miRNA-133 and miRNA-126. Iranian Journal of Basic Medical Sciences, 24(3), 369–376. https://doi.org/10.22038/ijbms.2021.49008.11231

Rebane, A. (2015). microRNA and Allergy. Advances in Experimental Medicine and Biology, 888, 331–352. https://doi.org/10.1007/978-3-319-22671-2_17

Rubins, A. Y., Branta, D. K., Hartmane, I. V., Rajevska, A. S., Gutmane, R. A., & Lielbriedis, Y. M. (1992). Multiple carcinoma in patients with psoriasis caused by psoralen- ultraviolet A therapy, natural killer cell insufficiency, or intensified sun exposure? Cutis, 49(6), 430-432. https://pubmed.ncbi.nlm.nih.gov/1628511/

Sharma, R., Tiwari, A., & McGeachie, M. (2022). Recent miRNA research in asthma. Current Allergy and Asthma Reports, 22(12), 231–258. https://doi.org/10.1007/s11882-022-01050-1

Smiyan, O. I., Plakhuta, V. A., Bunda, T. P., & Popov, S. V. (2015). Dynamics of cytokines in infants with acute obstructive bronchitis and thymomegalia. Likars'ka Sprava / Ministerstvo Okhorony Zdorov'ia Ukraïny, 1-2, 81-85. https://pubmed.ncbi.nlm.nih.gov/26118033/

Specjalski, K., Maciejewska, A., Romantowski, J., Pawłowski, R., Jassem, E., & Niedoszytko, M. (2022). miRNA profiles change during grass pollen immunotherapy irrespective of clinical outcome. Immunotherapy, 14(6), 433–444. https://doi.org/10.2217/imt-2021-0217

Syamsurizal, S., Elisma, E., & Pratiwi, P. D. (2024). Breadfruit peel as the most potent radical scavengers for skin protection. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 325-333. https://doi.org/10.22437/jiituj.v8i1.33966

Takamura, H., Nakayama, Y., Ito, H., Katayama, T., Fraser, P. E., & Matsuzaki, S. (2022). SUMO1 modification of Tau in progressive supranuclear palsy. Molecular Neurobiology, 59(7), 4419–4435. https://doi.org/10.1007/s12035-022-02734-5

Tazhibayeva, D., Kabdualieva, N., Aitbayeva, Zh., Sengaliy, M., & Niyazbekova, K. (2020). The dynamics of lipoperoxidation processes in the early period after combined effects of a high dose gamma radiation and immobilization stress (experimental research). Georgian Medical News, 302(5), 127-132. https://pubmed.ncbi.nlm.nih.gov/32672704/

Tunçer, F., Şahiner, Ü. M., Ocak, M., Ünsal, H., Soyer, Ö., Şekerel, B. E., & Birben, E. (2022). Comparison of miRNA expression in patients with seasonal and perennial allergic rhinitis and non-atopic asthma. Turkish Journal of Pediatrics, 64(5), 859–868. https://doi.org/10.24953/turkjped.2022.410

Ueta, M., Nishigaki, H., Komai, S., Mizushima, K., Tamagawa-Mineoka, R., Naito, Y., Katoh, N., Sotozono, C., & Kinoshita, S. (2023). Positive regulation of innate immune response by miRNA-let-7a-5p. Frontiers in Genetics, (13), 1025539. https://doi.org/10.3389/fgene.2022.1025539

Wang, L., Liu, X., Song, X., Dong, L., & Liu, D. (2019). MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2. International Archives of Allergy and Immunology, 178(2), 119–127. https://doi.org/10.1159/000493803

Wang, T., Wang, P., Chen, D., Xu, Z., & Yang, L. (2021). circARRDC3 contributes to interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells via the miR-375/KLE4 axis. Molecular Medicine Reports, 23(2), 141. https://doi.org/10.3892/mmr.2020.11780

Wang, Z., Song, Y., Jiang, J., Piao, Y., Li, L., Bai, Q., Xu, C., Liu, H., Li, L., Piao, H., & Yan, G. (2022). MicroRNA-182-5p attenuates asthmatic airway inflammation by targeting NOX4. Frontiers in Immunology, 13, 853848. https://doi.org/10.3389/fimmu.2022.853848

Wangyang, Y., Yi, L., Wang, T., Feng, Y., Liu, G., Li, D., & Zheng, X. (2018). MiR-199a-3p inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via suppressing retinoblastoma 1. Bioscience Reports, 38(6), BSR20180982. https://doi.org/10.1042/bsr20180982

Wardzyńska, A., Pawełczyk, M., Rywaniak, J., Makowska, J. S., Kowalski, M. L., & Chałubiński, M. (2023). miRNA expression in serum and PBMCs isolated from middle-aged and elderly patients during asthma exacerbation. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 131(7), 369–377. https://doi.org/10.1111/apm.13328

Weinder, J., Bartel, S., Kılıç, A., Zissler, U. M., Renz, H., Schwarze, J., Schmidt-Weber, C. B., Maes, T., Rebane, A., Krauss-Etschmann, S., & Rådinger, M. (2021). Spotlight on microRNA in allergy and asthma. Allergy, 76(6), 1661–1678. https://doi.org/10.1111/all.14646

Xiao, L., Jiang, Q., Hu, Q., & Li, Y. (2017). MicroRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3. Cellular Physiology and Biochemistry, 42(3), 901–912. https://doi.org/10.1159/000478645

Yan, F., Meng, W., Ye, S., Zhang, X., Mo, X., Liu, J., Chen, D., & Lin, Y. (2019). MicroRNA-146-a as a potential regulator involved in the pathogenesis of atopic dermatitis. Molecular Medicine Reports, 20(5), 4645–4653. https://doi.org/10.3892/mmr.2019.10695

Yang, Z., Wang, J., Pan, Z., & Zhang, Y. (2018). miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Experimental and Therapeutic Medicine, 15(4), 3781–3790. https://doi.org/10.3892/etm.2018.5907

Yu, Z.-J., Zeng, L., Luo, X.-Q., Geng, X.-R., Xu, R., Chen, K., Yang, G., Luo, X., Liu, Z.-Q., Liu, Z.-G., Liu, D.-B., Yang, P.-C., & Li, H.-B. (2017). Vitamin D3 inhibits microRna-17-92 to promote specific immunotherapy in allergic rhinitis. Scientific Reports, 7, 546. https://doi.org/10.1038/s41598-017-00431-1

Zeng, Q., Liu, W, Luo, R., & Lu, G. (2019). MicroRNA-181a and microRNA-155 are involved in the regulation of the differentiation and function of regulatory T cells in allergic rhinitis children. Pediatric Allergy and Immunology, 30(4), 434–442. https://doi.org/10.1111/pai.13038

Zeng, Y., Zeng, Q., Wen, Y., Li, J., Xiao, H., Yang, C., Luo, R., & Liu, W. (2024). Apolipoprotein A-I inhibited group II innate lymphoid cell response mediated by microRNA-155 in allergic rhinitis. Journal of Allergy and Clinical Immunology, 3(2), 100212. https://doi.org/10.1016/j.jacig.2024.100212

Zhang, Y., Yang, Y., Guo, J., Cui, L., Yang, L., Li, Y., Mou, Y., Jia, C., Zhang, L., & Song, X. (2022). mir-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5B. Allergy, 77(2), 550–558. https://doi.org/10.1111/all.15163

Zhong, Z., Huang, X., Zhang, S., Zheng, S., Cheng, X., Li, R., Wu, D., Mo, L., & Qu, S. (2023). Blocking Notch signalling reverses miR-155-mediated inflammation in allergic rhinitis. International Immunopharmacology, 116, 109832. https://doi.org/10.1016/j.intimp.2023.109832

Zhu, X., He, L., Li, X., Pei, W., Yang, H., Zhong, M., Zhang, M., Lv, K., & Zhang, Y. (2023). LncRNA AK089514/miR-125b-5p/TRAF6 axis mediates macrophage polarization in allergic asthma. BMC Pulmonary Medicine, 23(1), 45. https://doi.org/10.1186/s12890-023-02339-1

Zou, Y., Zhou, Q., & Zhang, Y. (2021). MicroRNA-21 released from mast cells-derived extracellular vesicles drives asthma in mice by potentiating airway inflammation and oxidative stress. American Journal of Translational Research, 13(7), 7475–7491.

Downloads

Published

2025-06-08

How to Cite

Lisiecka, M. Z. (2025). MICRO RNA AS KEY REGULATORS IN ALLERGIC DISEASES: EPIGENETIC MECHANISMS AND DIAGNOSTIC POTENTIAL. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 9(2), 871–893. https://doi.org/10.22437/jiituj.v9i2.39820