WAVELENGTH OF THE He-Ne LASER BY USING TWO TYPES OF DIAPHRAGM DIFFRACTION METHODS
DOI:
https://doi.org/10.22437/jiituj.v8i1.32058Keywords:
Diffraction Method, He-Ne Laser, Two Types Diaphragm, WavelengthAbstract
Light diffraction, characterized by the spreading or bending of waves when encountering narrow obstacles, forms the focal point of this research endeavor. Utilizing the circular diffraction method, this study pioneers the identification of the He-Ne laser wavelength through experimentation with both three and five-slit diaphragms. The investigation with a three-slit diaphragm involves three variations in slit distances: d = 0.125 mm, 0.25 mm, and 0.5 mm at a screen distance of 150 nm, revealing diffraction patterns across three orders of magnitude. For the five-slit diaphragm, the analysis extends to a slit distance of d = 0.25 nm and a layer distance of 320 nm. Interestingly, the results reveal that the wavelength spectrum of the He-Ne laser depends on the variation of the gap distance. Remarkably, a gap distance as minimal as 0.25 nm yields wavelengths within the range of 641 nm to 660.67 nm, highlighting the diffraction process's sensitivity to minute variations in experimental parameters. This groundbreaking research not only elucidates the intricate interplay between light diffraction and experimental configurations but also underscores the circular diffraction method's versatility in determining the fundamental properties of laser light. This study paves the way for advancements in optical instrumentation and characterization techniques by offering novel insights into wavelength determination methodologies. These findings have far-reaching implications across diverse scientific disciplines, including physics, materials science, and optical engineering, enhancing the precision and capability of optical measurement technologies.
Downloads
References
Berg, M. J., & Sorensen, C. M. (2018). A review and reassessment of diffraction, scattering, and shadows in electrodynamics. Journal of Quantitative Spectroscopy and Radiative Transfer, 210, 225–239. https://doi.org/10.1016/j.jqsrt.2018.02.002
Bhattacharyya, R., Bhattacharya, S., & Biswas, S. (2021). Rayleigh-Sommerfeld scalar diffraction by apertures moving at relativistic speeds. Journal of Optics, 23(4), 045601. https://doi.org/10.1088/2040-8986/abdcb9
Carnal, O. dan Mlynek, J.. 1991. Young’s Double-Slit Experiment With Atoms: A Simple Atom interferometer. Physical Review Lettes. 66. 2689-2692.
Cavalieri, S., Fini, L., Sali, E., & Buffa, R. (2007). Enhanced harmonic generation efficiency using focussing devices based on Fresnel diffraction. Laser Physics, 17(2), 143–147. https://doi.org/10.1134/s1054660x07020168
Dôme, G., Gianfelice, E., Palumbo, L., Vaccaro, V. G., & Verolino, L. (1991). Longitudinal coupling impedance of a circular iris. Il Nuovo Cimento, 104(8), 1241–1255. https://doi.org/10.1007/BF02784501
Eko. S., Suciyati, S. W., Junaidi, G. A. P. (2014). Pengukuran panjang gelombang sumber lampu monokromatis dari pola difraksi cahaya berbasis webcamdan borland Delphi. JURNAL Teori dan Aplikasi Fisika, 2(2).
Ibison, M. dan Jeffers, S.. 1998. A double slit diffraction experiment to investigate claims of consciosnessrelated anomalies. Journal of Scientific Exploration, 12(4), 543-550.
Kumar, A., Vaity, P., & Singh, R. P. (2010). Diffraction characteristics of optical vortex passing through an aperture-iris diaphragm. Optics Communications, 283(21), 4141–4145. https://doi.org/10.1016/j.optcom.2010.06.045
Lutfia, W., & Putra, N. M. (2020). Analisis profil pemahaman konsep dan model mental siswa di sma kesatria 2 semarang pada materi interferensi dan difraksi cahaya. UPEJ Unnes Physics Education Journal, 9(1), 27–35.
Likharev, K. K. (2018). Radiation, scattering, interference, and diffraction. In Classical Electrodynamics: Lecture Nnotes (pp. 8–1). IOP Publishing. https://doi.org/10.1088/978-0-7503-1404-6ch8
Halliday & Resnick. (2000). Fisika Jilid 2 Edisi Ketiga. Jakarta: Erlangga.
Mielenz, K. D. (1998). Algorithms for fresnel diffraction at rectangular and circular apertures. Journal of Research of the National Institute of Standards and Technology, 103(5), 497–509. https://doi.org/10.6028/jres.103.030
Minarni, Saktiono & G. Lestari. (2013). Pengukuran panjang gelombang cahaya laser dioda mengunakan kisi difraksi refleksi dan transmisi. Prosiding Semirata FMIPA Universitas Lampung. 167-171.
Moen, A. L., & Vander Meulen, D. L. (1970). Fresnel diffraction using a He-Ne gas laser. American Journal of Physics, 38(9), 1095–1097. https://doi.org/10.1119/1.1976557
Mukherjee, M. L. (1977). Negative order Fraunhofer diffraction pattern of He–Ne laser light. American Journal of Physics, 45(7), 678–679. https://doi.org/10.1119/1.10788
Roman, J.S., Ruiz, C., Perez, J.A., Delagado, D., Mendez, C., Plaja, L., dan Roso, L. (2006). Non-linear young’s double-slit experiment. Optic Express. 14(7)
Sariyanto, E., Suciyati, S. W., & Junaidi, G. A. P. (2014). Pengukuran panjang gelombang sumber lampu monokromatis dari pola difraksi cahaya berbasis webcam dan borland delphi. JURNAL Teori dan Aplikasi Fisika, 02(02), 199–204.
Schwartz, B. L., Yin, Z., Yasar, T. K., Liu, Y., Khan, A. A., Ye, A. Q., Royston, T. J., & Magin, R. L. (2016). Scattering and diffraction of elastodynamic waves in a concentric cylindrical phantom for mr elastography. IEEE Transactions on Bio-Medical Engineering, 63(11), 2308–2316. https://doi.org/10.1109/TBME.2016.2527825
Sugito, H., W.S. Budi, K.S. Firdausi & S.Mahmudah. 2005. Pengukuran panjang gelombang sumber cahaya berdasarkan pola interferensi celah banyak. Berkala Fisika. 8(2). 37-44
Sola, D., Alamri, S., & Lasagni, A. F. (2020). UV Direct Laser Interference Patterning of Diffraction Gratings in Poly-Hydroxyethyl-Methacrylate Ophthalmic Polymers. Journal of Laser Micro Nanoengineering, 15(3), 186–190. https://doi.org/10.2961/JLMN.2020.03.2005
Nguyen, V. T., Tran, V. S., Tran, Q. T., Tran, T. T., & Nguyen, N. D. (2015). Development of laser beam diffraction technique for determination of thermal expansion coefficient of polymeric thin films. VNU Journal of Science: Mathematics-Physics, 31(2).
Vainrub, A., Pustovyy, O., & Vodyanoy, V. (2006). Resolution of 90 nm (lamda/5) in an optical transmission microscope with an annular condenser. Optics Letters, 31(19), 2855. https://doi.org/10.1364/ol.31.002855
Viridi, S. (2016). Fisika Dasar Sparisoma Viridi. May, 147. https://doi.org/10.13140/RG.2.1.2536.2801
Viridi, S. 2010. Fisika Dasar. Bandung: Institut Teknologi Bandung. 155-162.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sri Purwaningsih, Hebat Shidow Falah, Neneng Lestari, Hardiantinus Sitinjak, Almahdi Mousa
This work is licensed under a Creative Commons Attribution 4.0 International License.