Bifurkasi Mundur dalam Model Matematika Penyebaran Penyakit Tuberkulosis dengan Mempertimbangkan Laju Deteksi dan Pengobatan

Authors

  • Chrissytalia Finka Liantoko Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Sanata Dharma, Yogyakarta 55281, Indonesia
  • Lusia Krismiyati Budiasih Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Sanata Dharma, Yogyakarta 55281, Indonesia

DOI:

https://doi.org/10.22437/msa.v4i1.28500

Keywords:

Tuberculosis, Mathematical model, Backward bifurcation

Abstract

Tuberculosis is a disease caused by the bacteria Mycobacterium tuberculosis. This disease can spread bacteria from one individual to another. In this article, we analyzed the spread of Tuberculosis using the SEIR model. The mathematical model is presented in a system of first-order nonlinear ordinary differential equations. This mathematical model also observes the rate of case detection and treatment. This article also discusses the analysis of the equilibrium point, the stability of the equilibrium points of the model that has been formed, and the basic reproduction number (R0). This model shows a backward bifurcation, that is the appearance of an endemic equilibrium point when R0<1, which means that the disease will not necessarily disappear even though R0<1. The numerical solution for this model is obtained using the fifth order Runge-Kutta method.

Downloads

Download data is not yet available.

References

Rokom. 2023, 30 Maret. Deteksi TBC Capai Rekor Tertinggi di Tahun 2022. Kemkes. Diakses pada tanggal 16 September 2023. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230331/3942688/deteksi-tbc-capai-rekor-tertinggi-di-tahun-2022/.

Inayah, N., Manaqib, M., Fitriyati, N., & Yupinto, I. 2020. Model Matematika Penyebaran Penyakit Pulmonary Tuberculosis dengan Penggunaan Masker Medis. Barekeng: Jurnal Ilmu Matematika dan Terapan, 14(3), 461-472. https://doi.org/10.30598/barekengvol14iss3pp461-472.

Imran, R. S., Pranata, W., & Ismail, S. 2020. Model Matematika SEIT Pada Penyebaran Penyakit Tuberculosis Resistensi Primer. Prosiding Seminar Nasional Pendidikan Matematika, Matematika, Statistika, dan Terapannya. Jurusan Matematika FMIPA Universitas Negeri Gorontalo. https://doi.org/10.31219/osf.io/hcxyp.

Fadilah, F. H. 2016. Kajian Perilaku Model Matematika Penularan Penyakit Tuberculosis. Jurnal Matematika UNAND, 5(2), 26-32. https://doi.org/10.25077/jmu.5.2.26-32.2016.

Castillo-Chavez, C. and Song, B. 2004. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 1(2), 361-404. https://doi.org/10.3934/mbe.2004.1.361.

Athithan, S. and Ghosh, M. 2013. Mathematical Modelling of TB with The Effects of Case Detection and Treatment. International Journal of Dynamics and Control, 1, 223–230. https://doi.org/10.1007/s40435-013-0020-2.

Driessche, P. V. D. and Watmough, J. 2002. Reproduction Number and Sub-threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6.

Anguelov, R., et al. 2014, Backward Bifurcation Analysis of Epidemiological Model with Partial Immunity. Computers and Mathematics with Applications, 68, 931–940. https://doi.org/10.1016/j.camwa.2014.06.010.

Downloads

Published

2023-10-31

How to Cite

Liantoko, C. F., & Budiasih, L. K. (2023). Bifurkasi Mundur dalam Model Matematika Penyebaran Penyakit Tuberkulosis dengan Mempertimbangkan Laju Deteksi dan Pengobatan. Mathematical Sciences and Applications Journal, 4(1), 1-7. https://doi.org/10.22437/msa.v4i1.28500