Anticaries Potential of Temu Kunci-Serai Ethyl Acetate Extract Combination: In Vitro and Molecular Studies Approach

Authors

  • Muhammad Priyadi Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya 7311, Central Kalimantan
  • Rizki Rachmad Saputra Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya 7311, Central Kalimantan

DOI:

https://doi.org/10.22437/chp.v7i1.26098

Keywords:

temu kunci, serai, molecular docking, Streptococcus mutans, 3AIC

Abstract

Dental caries is one of the problems in dental disorders suffered by many people. There have been many ways of handling such as using temu kunci and lemongrass plants. This study aims to determine the antibacterial activity of caries in vitro and predict the mechanism of action of the bacteria that cause caries Streptococcus mutans.  Temu kunci and lemongrass were extracted using ethyl acetate solvent. antibacterial tests against Streptococcus mutans were carried out using diffusion tests with a combination treatment of temu kunci: serai extracts 5% b/v: 5% b/v, 5% b/v: 10% b/v, and 10% b/v: 5% b/v. The positive control used amoxicillin and DMSO as a negative control. Potency as an anticaries drug of drived compound from Temu Kunci and Serai were evaluated by molecular docking using glucosyltransferase (3AIC). The results showed that the combination of temu kunci and serai with concentration 10% b/v: 5% b/v has potential as anticaries against Streptococcus mutans. Molecular studies depicted that Panduratin A, Isopanduratin, and 1,3-O-di-p-coumaroylglycerol have great activity toward 3AIC, respectively. Especially for Panduratin A and Isopanduratin, those compound depicted great and similar binding affinity (-8.4 kcal mol-1) that lower than Acarbose as native ligand  (-8.3 kcal mol-1). Furthermore, those compound binding similarity ilustrated activity mechanism similarly with native ligand toward receptor. Additionally, the profiling drug-target interaction suggested Temu Kunci’s derived compounds have great potential as anticaries treatment.   

Downloads

Download data is not yet available.

Author Biographies

Muhammad Priyadi, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya 7311, Central Kalimantan

 

 

 

Rizki Rachmad Saputra, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya 7311, Central Kalimantan

 

 

References

El Sherbiny, G. M. (2014). Control of growth Streptococcus mutans isolated from saliva and dental caries. Ournal of Current Microbiology and Applied Sciences, 3(10), 1–10.

Lemos, J. A., Palmer, S. R., Zeng, L., Wen, Z. T., Kajfasz, J. K., Freires, I. A., Abranches, J., & Brady, L. J. (2019). The Biology of Streptococcus mutans. Microbiology Spectrum, 7(1). https://doi.org/10.1128/microbiolspec.GPP3-0051-2018

World Health Organization. (2019, June 13). Ending childhood dental caries: WHO implementation manual. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/330643

Kementerian Kesehatan RI. (2019). Riset Kesehatan Dasar 2018.

Pitts, N. B., Zero, D. T., Marsh, P. D., Ekstrand, K., Weintraub, J. A., Ramos-Gomez, F., Tagami, J., Twetman, S., Tsakos, G., & Ismail, A. (2017). Dental caries. Nature Reviews Disease Primers, 3(1), 17030. https://doi.org/10.1038/nrdp.2017.30

Yon, M. J. Y., Gao, S. S., Chen, K. J., Duangthip, D., Lo, E. C. M., & Chu, C. H. (2019). Medical Model in Caries Management. Dentistry Journal, 7(2), 37. https://doi.org/10.3390/dj7020037

Chahyadi, A., Hartati, R., Wirasutisna, K. R., & Elfahmi. (2014). Boesenbergia Pandurata Roxb., An Indonesian Medicinal Plant: Phytochemistry, Biological Activity, Plant Biotechnology. Procedia Chemistry, 13, 13–37. https://doi.org/10.1016/j.proche.2014.12.003

Do, D. N., Nguyen, D. P., Phung, V.-D., Le, X.-T., Le, T. M., Do, V. M., Minh, B. Q., & Luu, X. C. (2021). Fractionating of Lemongrass (Cymbopogon citratus) Essential Oil by Vacuum Fractional Distillation. Processes, 9(4), 593. https://doi.org/10.3390/pr9040593

Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., & Odelade, K. A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137

Hwang, J.-K., Shim, J.-S., & Chung, J.-Y. (2004). Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans. Fitoterapia, 75(6), 596–598. https://doi.org/10.1016/j.fitote.2004.05.006

Taweechaisupapong, S., Singhara, S., Lertsatitthanakorn, P., & Khunkitti, W. (2010). Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pakistan Journal of Pharmaceutical Sciences, 23(2), 224–231.

Ortega Cuadros, M., Tofiño Rivera, A. P., Merini, L. J., & Martinez Pabon, M. C. (2018). Antimicrobial activity of Cymbopogon citratus (Poaceae) essential oil on Streptococcus mutans biofilm and cytotoxic effect on keratinocytes and fibroblasts. Revista de Biología Tropical, 66(4), 1519. https://doi.org/10.15517/rbt.v66i4.33140

Hati, A. K., Dyahariesti, N., & Yuswantina, R. (2019). Penetapan Kadar Flavonoid Dan Uji Aktivitas Antibakteri Ekstrak Sereh (Cymbopogon nardus) Dan Temu Kunci (Boesnbergia pandurata Roxb) Terhadap Bakteri Streptococcus Mutans. Indonesian Journal of Pharmacy and Natural Product, 2(2), 71–78. https://doi.org/10.35473/ijpnp.v2i2.264

Kawengian, S. A. F., Wuisan, J., & Leman, M. A. (2017). Uji daya hambat ekstrak daun serai (Cymbopogon citratus L) terhadap pertumbuhan Streptococcus mutans. E-GIGI, 5(1), 7–11. https://doi.org/10.35790/eg.5.1.2017.14736

Elfahmi, Aziz, S., & Sulaiman, I. (2017). Isolation of flavonoid compound from ethyl acetate extract of fingeroot (Boesenbergia Pandurata (Roxb.) Schlechter) rhizome. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(4), 1192–1198.

Priyadi, M., Chusna, N., Isnawati, I., & Indriani, O. (2021). Profil Fitokimia Ekstrak Etil Asetat Temu Kunci (Boesenbergia rotunda L.) dan Serai (Cymbopogon citratus). Jurnal Pharmascience, 8(1), 45. https://doi.org/10.20527/jps.v8i1.9725

Adhikari, D., Gong, D.-S., Oh, S. H., Sung, E. H., Lee, S. O., Kim, D.-W., Oak, M.-H., & Kim, H. J. (2020). Vasorelaxant Effect of Boesenbergia rotunda and Its Active Ingredients on an Isolated Coronary Artery. Plants, 9(12), 1688. https://doi.org/10.3390/plants9121688

Atun, S., Sri, H., & Rakhmawati, A. (2018). Potential Bioactive Compounds Isolated from Boesenbergia rotunda as Antioxidant and Antimicrobial Agents. Pharmacognosy Journal, 10(3), 513–518. https://doi.org/10.5530/pj.2018.3.84

Song, M. S., Shim, J. S., Gwon, S. H., Lee, C. W., Lee, C. W., Kim, H. S., & Hwang, J. K. (2008). Antibacterial activity of panduratin A and isopanduratin A isolated from Kaempferia pandurata Roxb. against acne-causing microorganisms. Food Science and Biotechnology, 17(6), 1357–1360.

Rukayadi, Y., Lee, K.-H., & Hwang, J.-K. (2009). Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro. Journal of Oral Science, 51(1), 87–95. https://doi.org/10.2334/josnusd.51.87

Hwang, J.-K., Chung, J.-Y., Baek, N.-I., & Park, J.-H. (2004). Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. International Journal of Antimicrobial Agents, 23(4), 377–381. https://doi.org/10.1016/j.ijantimicag.2003.08.011

Hacke, A. C. M., Marques, J. A., Vellosa, J. C. R., Boligon, A. A., da Silva, F. D., de Souza, D., Bonini, J. S., Rocha, J. B. T., & Pereira, R. P. (2018). Ethyl acetate fraction of Cymbopogon citratus as a potential source of antioxidant compounds. New Journal of Chemistry, 42(5), 3642–3652. https://doi.org/10.1039/C7NJ04352J

Wang, H., Zhang, R., Zhang, K., Chen, X., & Zhang, Y. (2022). Antioxidant, Hypoglycemic and Molecular Docking Studies of Methanolic Extract, Fractions and Isolated Compounds from Aerial Parts of Cymbopogon citratus (DC.) Stapf. Molecules, 27(9), 2858. https://doi.org/10.3390/molecules27092858

Nijampatnam, B., Zhang, H., Cai, X., Michalek, S. M., Wu, H., & Velu, S. E. (2018). Inhibition of Streptococcus mutans Biofilms by the Natural Stilbene Piceatannol Through the Inhibition of Glucosyltransferases. ACS Omega, 3(7), 8378–8385. https://doi.org/10.1021/acsomega.8b00367

Atta, L., Khalil, R., Khan, K. M., Zehra, M., Saleem, F., Nur-e-Alam, M., & Ul-Haq, Z. (2022). Virtual Screening, Synthesis and Biological Evaluation of Streptococcus mutans Mediated Biofilm Inhibitors. Molecules, 27(4), 1455. https://doi.org/10.3390/molecules27041455

Jauhar, M. M., Syaifie, P. H., Arda, A. G., Ramadhan, D., Nugroho, D. W., Ningsih Kaswati, N. M., Noviyanto, A., Rochman, N. T., & Mardliyati, E. (2023). Evaluation of propolis activity as sucrose-dependent and sucrose-independent Streptococcus mutans inhibitors to treat dental caries using an in silico approach. Journal of Applied Pharmaceutical Science, 13(3), 071–080. https://doi.org/10.7324/JAPS.2023.45365

Performance Standards for Antimicrobial Susceptibility Testing, 28th ed, Pub. L. No. M100, Wayne, PA: Clinical and Laboratory Standards Institute 1 (2018).

sayed, H., issa, mohammady, mahmoud, magda, abdelkader, emad, & ismail, hamadi. (2022). Phytochemical Screening and Antioxidant Activity of some Egyptian Medicinal Plants. Journal of Modern Research, 4(1), 14–20. https://doi.org/10.21608/jmr.2021.83376.1075

Tadtong, S., Watthanachaiyingcharoen, R., & Kamkaen, N. (2014). Antimicrobial Constituents and Synergism Effect of the Essential Oils from Cymbopogon citratus and Alpinia galanga. Natural Product Communications, 9(2), 1934578X1400900. https://doi.org/10.1177/1934578X1400900237

Prince, A., Roy, S., & McDonald, D. (2022). Exploration of the Antimicrobial Synergy between Selected Natural Substances on Streptococcus mutans to Identify Candidates for the Control of Dental Caries. Microbiology Spectrum, 10(3), e02357-21. https://doi.org/10.1128/spectrum.02357-21

Zhang, G., Tan, Y., Yu, T., Wang, S., Liu, L., & Li, C. (2021). Synergistic antibacterial effects of reuterin and catechin against Streptococcus mutans. LWT, 139, 110527. https://doi.org/10.1016/j.lwt.2020.110527

Ali, H. I., Ashida, N., & Nagamatsu, T. (2008). Antitumor studies. Part 4: Design, synthesis, antitumor activity, and molecular docking study of novel 2-substituted 2-deoxoflavin-5-oxides, 2-deoxoalloxazine-5-oxides, and their 5-deaza analogs. Bioorganic & Medicinal Chemistry, 16(2), 922–940. https://doi.org/10.1016/j.bmc.2007.10.014

Syarafina, Z. Y. I., Safithri, M., Bintang, M., & Kurniasih, R. (2022). In Silico Screening of Cinnamon (Cinnamomum burmannii) Bioactive Compounds as Acetylcholinesterase Inhibitors. Jurnal Kimia Sains Dan Aplikasi, 25(3), 97–107. https://doi.org/10.14710/jksa.25.3.97-107

Prahasti, A. E., Yuanita, T., & Rahayu, R. P. (2022). Computer Aided Drug Discovery Utilization in Conservative Dentistry. Journal of International Dental and Medical Research, 15(2), 899–903.

Ariefin, M., & Saputra, R. R. (2023). Study Natural Compound of Eleutherine americana as a SaR-CoV-2 Therapeutic Agent : In Silico Approach. ALCHEMY:Journal of Chemistry, 11(1), 41–49. https://doi.org/10.18860/al.v11i1.18018

Arora, R., de Beauchene, I. C., Polanski, J., Laine, E., & Tchertanov, L. (2013). Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. Journal of Molecular Recognition, 26(9), 383–401. https://doi.org/10.1002/jmr.2277

Bare, Y., Sari, D. R. T., Rachmad, Y. T., Krisnamurti, G. C., & Elizabeth, A. (2019). In Silico Insight the Prediction of Chlorogenic Acid in Coffee through Cyclooxygenase-2 (COX2) Interaction. Biogenesis: Jurnal Ilmiah Biologi, 7(2), 100–105. https://doi.org/10.24252/bio.v7i2.9847

Kharisma, V. D., Kharisma, S. D., Ansori, A. N. M., Kurniawan, H. P., Witaningrum, A. M., Fadholly, A., & Tacharina, M. R. (2021). Antiretroviral effect simulation from black tea (Camellia sinensis) via dual inhibitors mechanism in HIV-1 and its social perspective in Indonesia. Research Journal of Pharmacy and Technology, 14(1), 455–460. https://doi.org/10.5958/0974-360X.2021.00083.4

Downloads

Published

2023-07-30

How to Cite

Priyadi, M., & Saputra, R. R. (2023). Anticaries Potential of Temu Kunci-Serai Ethyl Acetate Extract Combination: In Vitro and Molecular Studies Approach. Chempublish Journal, 7(1), 18-30. https://doi.org/10.22437/chp.v7i1.26098