The effect of eight weeks of walking exercise and folate supplementation on plasma homocysteine levels in elderly non-athletes
DOI:
https://doi.org/10.22437/ijssc.v5i1.24174Keywords:
Aerobic Exercise, Folate supplement, HomocysteineAbstract
aims / objectives of the research: The increase in cardiovascular diseases among the elderly is one of the world's leading causes of death, and aerobic exercise is one way to prevent these conditions. Aim and Objective: This study aimed to determine the effect of 8 weeks of walking and folate consumption on plasma homocysteine levels in non-athletic older women. Materials and Methods: In this experimental study, 20 non-athletic older women aged 50 to 60 volunteered to participate and were randomly assigned to one of two groups: exercise+folic acid (10 persons) or exercise+placebo (10 persons). Both groups completed a walking program of eight weeks (3 sessions per week, each lasting 60 minutes). Following the conclusion of the exercise program, blood samples were collected and analyzed using independent and dependent t-statistics. After completing the walking exercise program for eight weeks, the plasma homocysteine levels fell considerably in both the exercise+supplement (P=0.002) and exercise+placebo (P=0.005) groups. Results: After completing the walking exercise program for eight weeks, the plasma homocysteine levels fell considerably in both the exercise+supplement (P=0.002) and exercise+placebo (P=0.005) groups.Conclusion: According to the present study's findings, elderly individuals should engage in walking exercises and take supplemental folate to lower plasma homocysteine and prevent cardiovascular risks.Downloads
References
Abbasi, I. H. R., Abbasi, F., Wang, L., Abd El Hack, M. E., Swelum, A. A., Hao, R., . . . Cao, Y. (2018). Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction. Amb Express, 8(1), 1-10. doi:https://doi.org/10.1186/s13568-018-0592-5
Aggarwal, A., Aggarwal, S., Goel, A., Sharma, V., & Dwivedi, S. (2012). A retrospective case-control study of modifiable risk factors and cutaneous markers in Indian patients with young coronary artery disease. JRSM cardiovascular disease, 1(3), 1-8. doi:https://doi.org/10.1258/cvd.2012.012010
Alghadir, A. H., Gabr, S. A., Anwer, S., & Li, H. (2021). Associations between vitamin E, oxidative stress markers, total homocysteine levels, and physical activity or cognitive capacity in older adults. Scientific reports, 11(1), 1-10. doi:https://doi.org/10.1038/s41598-021-92076-4
Asadi, M. B., Sharifi, H., Abedi, B., & Fatolahi, H. (2020). Acute inflammatory response to a single bout of resistance exercise with or without blood flow restriction. International Journal of Sport Studies for Health, 3(2). doi:https://doi.org/10.5812/intjssh.110594
Asemi, Z., Karamali, M., & Esmaillzadeh, A. (2014). Metabolic response to folate supplementation in overweight women with polycystic ovary syndrome: a randomized doubleâ€blind placeboâ€controlled clinical trial. Molecular nutrition & food research, 58(7), 1465-1473. doi:https://doi.org/10.1002/mnfr.201400033
Boulos, C., Yaghi, N., El Hayeck, R., Heraoui, G. N., & Fakhoury-Sayegh, N. (2019). Nutritional risk factors, microbiota and Parkinson’s disease: what is the current evidence? Nutrients, 11(8), 1896. doi:https://doi.org/10.3390/nu11081896
Castellano, C.-A., Paquet, N., Dionne, I. J., Imbeault, H., Langlois, F., Croteau, E., . . . Lacombe, G. (2017). A 3-month aerobic training program improves brain energy metabolism in mild Alzheimer’s disease: preliminary results from a neuroimaging study. Journal of Alzheimer's Disease, 56(4), 1459-1468. doi:https://doi.org/10.3233/JAD-161163
Cava, E., Yeat, N. C., & Mittendorfer, B. (2017). Preserving healthy muscle during weight loss. Advances in nutrition, 8(3), 511-519. doi:https://doi.org/10.3945/an.116.014506
Chrysant, S. G., & Chrysant, G. S. (2018). The current status of homocysteine as a risk factor for cardiovascular disease: a mini review. Expert review of cardiovascular therapy, 16(8), 559-565. doi:https://doi.org/10.1080/14779072.2018.1497974
Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19(1), 1-23. doi:https://doi.org/10.1186/s12934-020-01459-1
Després, J.-P. (2012). Body fat distribution and risk of cardiovascular disease: an update. Circulation, 126(10), 1301-1313. doi:https://doi.org/10.1161/CIRCULATIONAHA.111.067264
Devereux-Fitzgerald, A., Powell, R., Dewhurst, A., & French, D. P. (2016). The acceptability of physical activity interventions to older adults: A systematic review and meta-synthesis. Social science & medicine, 158, 14-23. doi:https://doi.org/10.1016/j.socscimed.2016.04.006
Esse, R., Barroso, M., Tavares de Almeida, I., & Castro, R. (2019). The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art. International journal of molecular sciences, 20(4), 867. doi:https://doi.org/10.3390/ijms20040867
Forsythe, R., Brownrigg, J., & Hinchliffe, R. (2015). Peripheral arterial disease and revascularization of the diabetic foot. Diabetes, obesity and metabolism, 17(5), 435-444. doi:https://doi.org/10.1111/dom.12422
Ganguly, P., & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition journal, 14(1), 1-10. doi:https://doi.org/10.1186/1475-2891-14-6
Ghahramani, M., Karbalaeifar, S., & Zokaei, A. (2019). The effect of physical activity on cardiovascular markers. Journal of Clinical Research in Paramedical Sciences, 8(2). doi:https://doi.org/10.5812/jcrps.92521
Hejazi, S. M., Rashidlamir, A., Jebelli, A., Nornematolahi, S., Ghazavi, S. M., & Soltani, M. (2013). The effects of 8 weeks aerobic exercise on levels of homocysteine, HS-CRP serum and plasma fibrinogen in type II diabetic women. Life Sci J, 10(1S), 430-435. doi:https://doi.org/10.7537/marslsj1001s13.78
Herzig, K., Ahola, R., Leppäluoto, J., Jokelainen, J., Jämsä, T., & Keinänen-Kiukaanniemi, S. (2014). Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. International journal of obesity, 38(8), 1089-1096. doi:https://doi.org/10.1038/ijo.2013.224
Hossain, T. L., Sayfaddin, D. L., Ghanbari, N., & Mahmmod, B. N. (2019). The Effect of 12 weeks volleyball training on serum ghrelin levels in obese adult males. Halabja University Journal, 4(3), 149-155. doi:https://doi.org/10.32410/huj-10246
Kaye, A. D., Jeha, G. M., Pham, A. D., Fuller, M. C., Lerner, Z. I., Sibley, G. T., . . . Kevil, C. G. (2020). Folic acid supplementation in patients with elevated homocysteine levels. Advances in Therapy, 37, 4149-4164. doi:https://doi.org/10.1007/s12325-020-01474-z
Khan, M. A., Hashim, M. J., Mustafa, H., Baniyas, M. Y., Al Suwaidi, S. K. B. M., AlKatheeri, R., . . . Al Darmaki, R. S. (2020). Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus, 12(7). doi:https://doi.org/10.7759/cureus.9349
Khan, N. N., Boyle, J. A., Lang, A. Y., & Harrison, C. L. (2019). Preconception health attitudes and behaviours of women: a qualitative investigation. Nutrients, 11(7), 1490. doi:https://doi.org/10.3390/nu11071490
Kitzman, D. W., Brubaker, P. H., Herrington, D. M., Morgan, T. M., Stewart, K. P., Hundley, W. G., . . . Haykowsky, M. J. (2013). Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. Journal of the American college of cardiology, 62(7), 584-592. doi:https://doi.org/10.1016/j.jacc.2013.04.033
Liang, M., Pan, Y., Zhong, T., Zeng, Y., & Cheng, A. S. (2021). Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: a systematic review and network meta-analysis. Reviews in Cardiovascular Medicine, 22(4), 1523-1533. doi:https://doi.org/10.31083/j.rcm2204156
Mohammed, S. S., Sayfaddin, D. L., Rahim, H. A., Kareem, D. A., Ali, M. J., Omar, S. M., . . . Rashid, B. J. (2022). Short-Term HMB Supplementation Reduces Muscle Damage After a Bout of Resistance Training in non-Athletic Girls. Journal of Coaching and Sports Science, 1(2), 34-47. doi:https://doi.org/10.58524/jcss.v1i2.157
Nozari, E., Ghavamzadeh, S., & Razazian, N. (2019). The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clinical nutrition research, 8(1), 36-45. doi:https://doi.org/10.7762/cnr.2019.8.1.36
Peric, R., & Nikolovski, Z. (2017). Validation of four indirect VO2max laboratory prediction tests in the case of soccer players. Journal of Physical Education and Sport, 17(2), 608. doi:https://doi.org/10.7752/jpes.2017.02092
Przybycien-Gaweda, P. M., Lee, T. S., Lim, W. S., Chong, M. S., Yap, P., Cheong, C. Y., . . . Gao, Q. (2022). One-Carbon Metabolism Biomarkers and Risks of Incident Neurocognitive Disorder among Cognitively Normal Older Adults. Nutrients, 14(17), 3535. doi:https://doi.org/10.3390/nu14173535
Ratajczak, A. E., Szymczak-Tomczak, A., Rychter, A. M., Zawada, A., Dobrowolska, A., & Krela-Kaźmierczak, I. (2021). Does folic acid protect patients with inflammatory bowel disease from complications? Nutrients, 13(11), 4036. doi:https://doi.org/10.3390/nu13114036
Rehman, T., Shabbir, M. A., Inamâ€Urâ€Raheem, M., Manzoor, M. F., Ahmad, N., Liu, Z. W., . . . Aadil, R. M. (2020). Cysteine and homocysteine as biomarker of various diseases. Food science & nutrition, 8(9), 4696-4707. doi:https://doi.org/10.1002/fsn3.1818
Shahbazian, N., Jafari, R. M., & Haghnia, S. (2016). The evaluation of serum homocysteine, folic acid, and vitamin B12 in patients complicated with preeclampsia. Electronic Physician, 8(10), 3057. doi:https://doi.org/10.19082/3057
Singh, Y., Samuel, V. P., Dahiya, S., Gupta, G., Gillhotra, R., Mishra, A., . . . Tambuwala, M. M. (2019). Combinational effect of angiotensin receptor blocker and folic acid therapy on uric acid and creatinine level in hyperhomocysteinemiaâ€associated hypertension. Biotechnology and applied biochemistry, 66(5), 715-719. doi:https://doi.org/10.1002/bab.1799
Stipanuk, M. H. (2020). Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. The Journal of nutrition, 150(Supplement_1), 2494S-2505S. doi:https://doi.org/10.1093/jn/nxaa094
Szczepańska, E., Białek-Dratwa, A., Janota, B., & Kowalski, O. (2022). Dietary Therapy in Prevention of Cardiovascular Disease (CVD)—Tradition or Modernity? A Review of the Latest Approaches to Nutrition in CVD. Nutrients, 14(13), 2649. doi:https://doi.org/10.3390/nu14132649
Tsai, C.-L., Wang, C.-H., Pan, C.-Y., & Chen, F.-C. (2015). The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Frontiers in behavioral neuroscience, 9, 23. doi:https://doi.org/10.3389/fnbeh.2015.00023
Walentukiewicz, A., Lysak-Radomska, A., Jaworska, J., Prusik, K., Prusik, K., Kortas, J. A., . . . Ziemann, E. (2018). Vitamin D supplementation and Nordic walking training decreases serum homocysteine and ferritin in elderly women. International Journal of Environmental Research and Public Health, 15(10), 2064. doi:https://doi.org/10.3390/ijerph15102064
Xu, R., Huang, F., Wang, Y., Liu, Q., Lv, Y., & Zhang, Q. (2020). Gender-and age-related differences in homocysteine concentration: a cross-sectional study of the general population of China. Scientific reports, 10(1), 1-11. doi:https://doi.org/10.1038/s41598-020-74596-7