E-ISSN: 2830-554X https://online-journal.unja.ac.id/multiproximity

Peramalan Nilai Ekspor Batu Bara Menggunakan Metode ARIMA Terhadap Perekonomian Penduduk Provinsi Jambi Berbasis Thecnopreneurship

Forecasting the Value of Coal Exports Using the ARIMA Method on the Economy of the Population of Jambi Province Based on Thecnopreneurship

Ti'ah Agustina 1, Tasya Amanda 2, Bunga Mardhotillah3

^{1,2,3}Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas Jambi Email: *ttiah74@gmail.com*

Abstrak

Penelitian ini bertujuan untuk membandingkan dua metode peramalan, yaitu *AutoRegressive Integrated Moving Average* (ARIMA) dalam meramalkan nilai ekspor bahan bakar mineral di provinsi tersebut. Data yang digunakan adalah data historis nilai ekspor bahan bakar mineral dari tahun sebelumnya. Metode ARIMA dipilih karena keandalannya dalam meramalkan data time series tanpa mempertimbangkan variabel eksternal,. Hasil penelitian menunjukkan bahwa metode menghasilkan tingkat akurasi yang berbeda dalam memprediksi nilai ekspor bahan bakar mineral. Dengan demikian, pemilihan metode peramalan yang tepat harus mempertimbangkan ketersediaan data variabel eksternal dan kebutuhan peramalan jangka pendek atau jangka panjang.

Kata Kunci: ARIMA, peramalan, ekspor bahan bakar mineral, Jambi.

Abstract

This study aims to compare two forecasting methods, namely the AutoRegressive Integrated Moving Average (ARIMA) and the Transfer Function, in forecasting the export value of mineral fuels in the province. The data used is historical data on the export value of mineral fuels from the previous year. The ARIMA method was chosen because of its reliability in forecasting time series data without considering external variables, while the Transfer Function is used to measure the influence of external variables such as world oil prices and currency exchange rates on exports. The results show that the two methods produce different levels of accuracy in predicting the export value of mineral fuels. The Transfer function proved to be more accurate in modeling the relationship between exports and external variables, while ARIMA provided better performance in the short term. Thus, the selection of the right forecasting method must consider the availability of external variable data and short- or long-term forecasting needs.

Keywords: ARIMA, Transfer Function, forecasting, export of mineral fuels, Jambi.

PENDAHULUAN

Batu bara merupakan sumber energi utama yang banyak digunakan dalam pembangkit listrik, di mana hampir setengah dari total konsumsi domestik digunakan untuk keperluan tersebut. Selain itu, batubara juga mendukung kegiatan industri dan menjadi komoditas ekspor penting yang berkontribusi pada pertumbuhan ekonomi negara (Afin & Kiono, 2021). Batu bara menjadi komoditas ekspor vital, terutama bagi negara-negara yang bergantung pada energi listrik dari bahan bakar fosil, memberikan kontribusi besar terhadap stabilitas ekonomi dan pemenuhan energi dalam negeri(Pahlevi dkk., 2024).

Indonesia merupakan pengekspor batubara terbesar kedua di dunia, terutama ke negara-negara Asia, menjadikan komoditas ini strategis dalam mendukung ekonomi nasional (Masa dkk., 2024). Provinsi Jambi sebagai salah satu penghasil batu bara, memiliki kontribusi signifikan terhadap ekonomi daerah melalui sektor pertambangan. Namun, kegiatan ekspor batubara menghadapi tantangan seperti fluktuasi harga pasar global, kebijakan perdagangan internasional dan infrastruktur yang terbatas (Kusnadi dkk, 2023). Selain itu Ketidak pastian pasar global, seperti perubahan harga dan permintaan, serta faktor eksternal seperti kebijakan perdagangan internasional dan fluktuasi nilai tukar, menjadi tantangan dalam memprediksi nilai ekspor. Meskipun metde seperti ARIMA dapat menghasilkan prediksi yang cukup baik, kompleksitas faktor eksternal sering mengakibatkan ketidakakuratan (Dai, 2023).

Dalam menghadapi tantangan tersebut,technopreneurship menawarkan solusi inovatif untuk ekspor batu bara Jambi melalui teknologi seperti big data untuk analisis pasar, gasifikasi dan carbon capture untuk nilai tambah ramah lingkungan, serta IoT untuk efisiensi distribusi. Pendekatan ini meningkatkan daya saing global sekaligus mendukung ekonomi berkelanjutan.(Azizah A' & Soelistyo, 2022). Penelitian (Prahesti dkk., 2023) yang membandingkan metode ARIMA dan fungsi transfer dalam peramalan harga batubara menunjukkan bahwa fungsi transfer lebih akurat, dengan MAPE 17,66% dibandingkan ARIMA yang memiliki MAPE 23,14%.

Pertumbuhan penduduk yang pesat di Indonesia, termasuk Jambi, mempengaruhi ekonomi dan pengelolaan sumber daya(Puspita Sari dkk., 2023).Selain itu, pertumbuhan ekonomi yang mencerminkan kesejahteraan masyarakat juga dipengaruhi oleh ekspor, yang berperan penting dalam meningkatkan produksi dan stabilitas ekonomi negara. (Hodijah dkk., 2021). Ekspor memiliki peran dalam pertumbuhan ekonomi dengan meningkatkan devisa dan sektor produksi. Namun, ekspor batu bara menghadapi tantangan seperti fluktuasi harga global,perubahan permintaan pasar dan keterbatasan infrastruktur.(Kurniawati dkk., 2023).

Untuk mendukung pertumbuhan ekonomi dan daya saing ekspor batu bara Jambi, teknologi seperti big data, IoT, dan analisis CMS dapat digunakan untuk memprediksi permintaan pasar dan mengoptimalkan distribusi. Selain itu, teknologi bersih seperti gasifikasi dan carbon capture membantu mengurangi dampak lingkungan sekaligus memberikan nilai tambah pada produk batu bara(Tika Carolina & Aminata, 2019).

Analisis data deret waktu (time series) menjadi pendekatan yang banyak digunakan untuk memprediksi pola ekonomi,termasuk ekspor (Wiyanti dan Pulungan, 2012).Salah satu metode yang efektif adalah Autoregressive Integrated Moving Average(ARIMA), yang diperkenalkan oleh George Box dan Gwilym Jenkins yaitu menganalisis data historis untuk memprediksi tren masa depan (Wulandari dan Gernowo, 2019). Model ini menggunakan data masa lalu tanpa variabel independen, efektif untuk jangka pendek, namun kurang akurat dalam jangka panjang (Hardianto dan Zulhamidi,2023).

Metode ini unggul dalam meramalkan data kejadian masa depan berdasarkan data masa lalu, dengan menggunakan metode tertentu untuk memprediksi hasil (Wahyuningsih & Desi Yuniarti, 2016). Namun, untuk memastikan bahwa prediksi yang dihasilkan dapat diandalkan, diperlukan uji reliabilitas dan validitas. Uji reliabilitas adalah uji yang memastikan bahwa model dapat diterapkan secara konsisten, sementara uji validitas memastikan bahwa prediksi yang dihasilkan model memiliki ketepatan tinggi dan relevan dengan data aktual. Pengujian kedua aspek ini sangat penting dalam memastikan keberhasilan analisis dan prediksi (Khuzaifah & Junita, 2021).

Validitas instrumen dapat dibuktikan dengan beberapa bukti. Bukti-bukti tersebut antara lain secara konten, atau disebut validitas konten atau validitas isi, secara konstruk atau dikenal dengan validitas konstruk dan secara kriteria atau dikenal dengan validitas kriteria. Uji validitas bertujuan untuk melihat ketepatan pengukuran. Sedangkan Uji reliabilitas bertujuan untuk mengetahui sejauh mana instrumen tersebut dapat dipercaya. Instrumen yang telah terstandar dan reliabel tetap harus dilakukan uji coba kembali setiap akan digunakan. Hal ini disebabkan karena setiap subjek, lokasi, dan waktu yang berbeda akan menghasilkan hasil yang berbeda pula (Tarigan et al., 2022).

Reliabilitas merupakan indeks yang menunjukkan sejauh mana suatu alat pengukur dapat dipercaya atau diandalkan. Sehingga uji reliabilitas dapat digunakan untuk mengetahui konsistensi alat ukur, apakah alat ukur tetap konsisten jika menghasilkan hasil yang sama meskipun dilakukan pengukuran berkali-kali. Tinggi rendahnya reliabilitas secara empirik ditunjukkan oleh suatu angka yang disebut koefisien reliabilitas. Semakin tinggi koefisien korelasi antara hasil ukur dua tes yang paralel, maka konsistensi antara keduanya semakin naik dan alat ukur disebut alat ukur yang reliabel (Iswati, 2014).

Technopreneurship merupakan sebuah inkubator bisnis berbasis teknologi, yang memiliki wawasan untuk menumbuh-kembangkan jiwa kewirausahaan di kalangan generasi muda, khususnya mahasiswa sebagai peserta didik dan merupakan salah satu strategi terobosan baru untuk mensiasati masalah pengangguran intelektual yang semakin meningkat. Seorang technopreneur pada dasarnya memiliki mindset dan karakter dari entrepreneur, akan tetapi seorang technopreneur lebih menekankan pada penerapan teknologi untuk menjalankan bisnis yang akan dijalankannya khususnya terhadap pengembangan produk baru dan terhadap inovasi. Pemanfaatan teknologi mutakhir tepat guna dalam pengembangan usaha yang berdasarkan pada jiwa entrepreneur yang mapan akan dapat mengoptimalkan proses sekaligus hasil dari unit usaha yang dikembangkan (Sunarya, 2017).

METODOLOGI PENELITIAN

Jenis penelitian ini adalah kuantitatif dan Kualitatif atau Mix Methode. Penelitian kuantitatif dapat diartikan sebagai upaya untuk mempelajari suatu masalah. Berdasarkan pertanyaan-pertanyaan tersebut, peneliti dapat mencari dan mengambil data, menentukan variabel, dan melakukan pengukuran numerik untuk melakukan analisis sesuai dengan tingkat statistik yang sesuai,dalam penelitian kuantitatif ini peneliti menggunakan aplikasi SPSS yang digunakan sebagai alat uji validitas dan realibilitas dari butir pertanyaan.

Pada tahap ini, data yang digunakan dalam penelitian ini diambil dari situs resmi Badan Pusat Statistik (BPS) Jambi. Data yang diambil berjudul "Peramalan Nilai Ekspor Batu Bara Menggunakan Metode Arima Terhadap Perekonomian Penduduk Provinsi Jambi". Data ini mencakup ekspor di Jambi, yang diuraikan berdasarkan bulan juli 2024. Pengumpulan data ini dilakukan untuk menganalisis nilai ekspor menggunakan ARIMA.

Analisis Deret Waktu

Analisis deret waktu adalah metode untuk mengolah data yang dikumpulkan secara teratur, seperti harian, mingguan, atau bulanan, untuk memprediksi kondisi di masa depan(Maulana, 2018). Dalam memilih metode peramalan, kita perlu memahami pola yang ada dalam data, yang terbagi menjadi empat jenis: pola horizontal (stabil), pola tren (menaik atau menurun), pola musiman (berulang setiap periode tertentu), dan pola siklus (berulang dengan interval yang tidak tetap) Dengan mengenali pola-pola ini, kita dapat memilih metode peramalan yang lebih tepat dan akurat, sehingga dapat menghasilkan prediksi yang lebih baik untuk masa depan.(Lusiana & Yuliarty, 2020).

ARIMA

Autoregressive Integrated Moving Average (ARIMA) adalah model yang dikembangkan oleh George Box dan Gwilym Jenkins untuk memproyeksikan nilai masa depan berdasarkan data deret waktu. Model ARIMA terdiri dari tiga komponen utama: autoregressive (AR), moving average (MA), dan autoregressive moving average (ARMA). Dengan menggunakan ARIMA, kita dapat membuat prediksi yang lebih akurat mengenai kemungkinan perkembangan di masa depan berdasarkan pola dalam data historis (Wei, 2006).

Menurut (Soejoeti, 1987), ada beberapa model time series yang dapat dituliskan sebagai berikut:

1. Proses *Autoregressive* (AR) Bentuk umum proses *Autoregressive* tingkat *p* atau AR (*p*) adalah

$$Z_t = \phi_1 Z_{t-1} + \cdots + \phi_p Z_{t-p} + a_t$$

dengan:

 Z_t : Data pada periode ke-t $\phi_1...\phi_p$: Koefisien orde p a_t : Galat pada waktu t

2. Proses Moving Average (MA)

Bentuk umum proses *Moving Average* tingkat q atau MA(q) adalah sebagai berikut:

$$Z_t = a_t - \theta_1 a_{t-1} - \cdots - \theta_q a_{t-q}$$

dengan:

 Z_t : Data pada periode ke-t

 $\theta_1...\theta_q$: Koefisien orde q

 a_t : Galat pada waktu t sampai t-q

3. Proses Autoregressive Moving Average atau ARMA (p,q).

Bentuk umum proses ARMA (p,q) adalah sebagai berikut:

$$Z_t = \phi_1 Z_{t-1} + \cdots + \phi_p Z_{t-p} + a_t - \theta_1 a_{t-1} - \cdots - \theta_q a_{t-q}$$

dengan:

 Z_t : Data pada periode ke-t

 $\phi_1...\phi_p$: Koefisien orde p $\theta_1...\theta_q$: Koefisien orde q

 α_t : Galat pada waktu t

4. Proses Autoregressive Integrated Moving Average ARIMA (p,d,q).

Bentuk umum dari proses ARIMA (p,d,q) adalah sebagai berikut:

$$\phi_{p}(B)(1-B)^{d}Zt = \theta_{q}(B)a_{t}$$

dengan:

 Z_t : Data pada periode ke-t

 $\phi_1...\phi_p$: Koefisien orde p $\theta_1...\theta_q$: Koefisien orde q

B : Operator backward shift

d : Koefisien orde d (differencing)

 α_t : Galat pada waktu t

Menurut (Deviana dkk., 2021) tahapan-tahapan analisis ARIMA dalam peramalan

a. Pemeriksaan Kestasioneran Data

Pengujian kestasioneran data dapat dilakukan dengan membuat fungsi autokorelasi (ACF dan PACF) untuk melakukan identitas pola waktu. Jika data tidak stasioner terhadap varians maka dilakukan transformasi Box-Cox, jika data tidak stasioner dalam *mean* maka dilakukan proses *differencing*.

b. Proses Pembedaan (Differencing)

Proses ini dilakukan apabila data tidak stasioner yaitu dengan data asli (Z_t) diganti dengan perbedaan pertama data asli tersebut. Jika data masih belum cukup stasioner maka dapat dilakukan differencing hingga data cukup stasioner. Differencing dilakukan maksimal dua kali supaya tidak merusak data.

c. Penentuan Nilai p, d dan q dalam ARIMA

Setelah data runtut waktu stasioner, tahap berikutnya adalah menetapkan model ARIMA (p,d,q) yang cocok, maksudnya menetapkan nilai p, d dan q. Jika tanpa proses differencing (d) diberi nilai 0, jika menjadi stasioner setelah first order differencing (d) bernilai 1 dan seterusnya. Dalam memilih berapa p dan q dapat dibantu dengan mengamati pola fungsi ACF dan PACF dari data yang sudah stasioner. Proses Autoregressive-Integrated-Moving Average yaitu ARIMA(p,d,q).

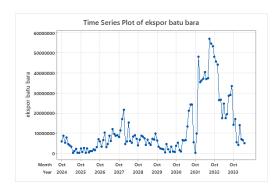
d. Estimasi Parameter Model ARIMA

Melakukan penaksiran dan pengujian signifikansi parameter, apakah parameter sudah signifikan atau tidak. Jika data sudah signifikan maka dapat dilanjut ke langkah berikutnya, jika tidak signifikan maka membuat model dugaan yang lain.

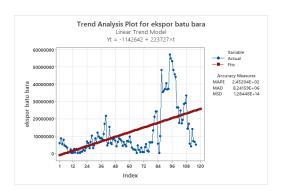
e. Peramalan

Tahap kelima adalah menggunakan model terbaik untuk peramalan. Jika model terbaik telah ditetapkan model itu siap digunakan untuk peramalan.

HASIL DAN PEMBAHASAN

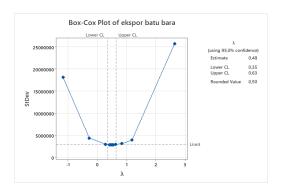

Identifikasi Data

Data nilai ekspor batu bara terhitung dari januari 2015 sampai dengan agustus 2024 adalah sumber data utama yang digunakan dalam penelitian ini. Data ekspor batu bara disajikan pada tabel berikut:

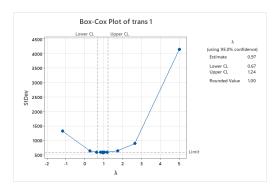

Tabel. 1 Data Ekspor Batu Bara di Jambi Januari 2015 sampai Agustus 2024

Bulan	Tahun									
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Januari	5934648	2524237	5854914	8183526	4020502	6466111	3657562,74	348156	47986440	14259771
Februari	8707401	646277	3220507	11293201	6712452	3359701	5283116,38	9886932	45501243	17062891
Maret	5373973	2621976	6592946	17132241	8707692	2391766	1684381,35	48005325	44030985	5524174,34
April	7934656	301254	10181033	21637950	8219623	2241224	985723,29	35319444	26421425	4194585
Mei	4632434	2461467	3072960	4729011	7351556	2050894	6490775,02	36099234	26574953	13950153,66
Juni	4043969	413418	4694442	5885430	4270300	427460	6455822,55	37095270	17465863	7052828
Juli	3327519	1032365	8715485	15233274	6786367	4636209	6533232,11	40334700	24757730	6610884,14
Agustus	320060	1156618	6180297	6218632	5120621	2022060	13332677,42	36806012	17417851	5014445,83
September	1115935	2046173	12118129	5364458	4120391	736518	21139304,59	37254507	19382606	-
Oktober	2297978	1559160	9737424	8270654	7142594	3304891	24131055,85	56880260	28570139	-
November	289582	3169914	8707120	8996930	6854377	932060	24279415,44	54591502	29024223	-
Desember	324067	7009867	8982742	7326378	9755134	783573	5550098	53276952	33453723	-

Pada tahap pertama, identifikasi *time series* untuk mengetahui karakteristik dari model data yang dimiliki. Proses identifikasi dilakukan dengan plot data seperti yang ditunjukkan pada Gambar 1 untuk menentukan kestasioneran data terhadap nilai variansi dan nilai rata-rata.



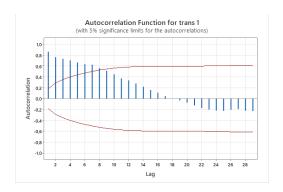
Gambar 1. Plot Data Ekspor Batu Bara


Gambar 2. Plot Analisis Tren pada Data Ekspor Batu Bara

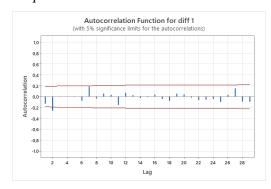
Pada Gambar 1 dan Gambar 2, data belum bersifat stasioner, sehingga perlu dilakukan proses penstasioneran. Dari grafik, terlihat bahwa fluktuasi data tidak konsisten dan cenderung menunjukkan tren meningkat seiring waktu. Setelah diidentifikasi bahwa data belum stasioner, langkah berikutnya adalah memeriksa stasioneritas terhadap variansi atau rata-rata. Jika data belum stasioner dalam hal variansi, perlu dilakukan transformasi, sedangkan jika belum stasioner dalam hal rata-rata, diperlukan differencing. Stasioneritas variansi dapat diuji menggunakan transformasi Box-Cox. Data dianggap stasioner jika nilai lambda (λ) hasil transformasi mendekati 1. Jika tidak, transformasi harus dilanjutkan sampai nilai lambda mencapai 1.

Gambar 3. Output Box-Cox Data Ekspor Batu Bara

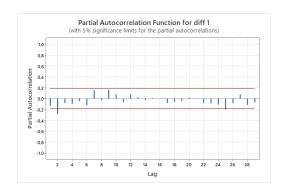
Berdasarkan Gambar 3, data tidak dikatakan stasioner dalam variansi sebab *rounded value* (lamda) bernilai 0,50. Karena data tidak dapat dianggap stasioner dalam variansi, sehingga harus dilakukan proses transformasi data.



Gambar 4. Output Box-Cox Data Ekspor Setelah Dilakukan Transformasi 1


Transformasi pertama telah dilakukan seperti Gambar 4, *rounded value* bernilai 1,00. Hal tersebut memperlihatkan data impor migas telah stasioner terhadap variansi, sehingga transformasi tidak dilakukan lagi

Estimasi Parameter


Setelah data sudah stasioner terhadap rata-rata dan variansi, tahap selanjutnya adalah menentukan model sementara ARIMA (p, d, q) yang sesuai dengan memplot data volume impor migas yang sudah di *differencing* ke dalam plot ACF dan PACF.

Gambar 5. Output Grafik Autocorelation Function Data Ekspor

Gambar 6. Output Grafik Autocorelation Function Data Ekspor differencing 1

Gambar 7. Output Grafik Partial Autocorelation Function Data Ekspor Differencing 1

Berdasarkan pada hasil ouput terlihat pada gambar 5 menunjukkan bahwa grafik autocorrelation function data ekspor transformasi pertama menunjukkan bahwa terdapat beberapa lag yang keluar dari batas signifikan yang berarti bahwa hasil ouput pada gambar 5 tidak layak untuk digunakan dalam nenetukan model terbaik. Oleh karena itu, perlu dilakukan differencing dan diperoleh hasil pada gambar 6 yaitu output grafik autocorrelation function hasil differencing pertama yang menunjukkan pada gambar tersebut data sudah signifikan yang di tunjukkan adanya garis yang keluar pada lag yaitu 2.

Pada gambar 7 menunjukkan bahwa output grafik partial autocorrelation function ada lag 2 berada pada luas batas garis signifikan. Berdasarkan hasil output dari plot ACF dan PACF diperoleh hasil pada plot ACF memiliki 2 lag di atas batas signifikan dan pada plot PACF terdapat 2 lag juga yang keluar dari batas garis signifikan, maka diperoleh hasil untuk Autoregressive (AR) orde 2 dan untuk Moving Average orde 2. Jadi, didapatkan model-model untuk ARIMA yang memungkinkan yantu model ARIMA (2, 1, 2), (1, 1, 1),(2, 1, 1), (2, 1, 0), (1, 1, 0) dan (0, 1, 1).

Pemeriksaan Diagnostik Model

Pemeriksaan diagnostik pada model ARIMA penting untuk memastikan bahwa model yang dipilih sesuai dengan data dan memiliki performa yang baik. Dalam pemeriksaan diagnostic model untuk membuktikan bahwa model yang dipilih sudah layak untuk digunakan sebagai peramalan dilakukan dengan cara menguji kesignifikan pada parameter serta uji kesesuaian model (uji asumsi white noise).

Uji Signifikansi Parameter

Berdasarkan beberapa model ARIMA berikut merupakan hasil uji signifikansi parameter:

Tabel 2. Hasil Uji Sinifikansi Parameter Model ARIMA

Estimasi Parameter	Parameter	P-value	Hasil Uji Signifikansi
ARIMA (1,1,1)	AR (1)	0,089	Tidak Signifikan
	MA (1)	0,004	Signifikan
ARIMA (2,1,1)	AR (1)	0,000	Signifikan
	MA (2)	0,075	Tidak Signifikan

Multi Proximity: Jurnal Statistika Universitas Jambi Vol. 3 No. 1 - Juni 2024

ARIMA (2,1,0)	AR (1)	0,130	Tidak Signifikan
	MA (2)	0,147	Tidak Signifikan
ARIMA (1,1,0)	AR (1)	0,180	Tidak Signifikan
ARIMA (0,1,1)	MA (1)	0,046	Signifikan
ARIMA (2, 1, 2)	AR (1)	0,000	Signifikan
	AR (2)	0,000	Signifikan
	MA (1)	0,000	Signifikan
	MA (2)	0,000	Signifikan

Berdasarkan hasil uji signifikansi parameter model ARIMA pada table 2 dapat dilihat bahwa model ARIMA (0, 1, 1) dan model ARIMA (2, 1, 1) merupakan model dengan parameter yang signifikan. Parameter dikatakan signifikan jika *nilai p-value* pada nilai < 0,05. Oleh karena itu, model ARIMA (0, 1, 1) dan ARIMA (2, 1, 1) memenuhi syarat signifikansi parameter.

Uji Asumsi White Noise

Setelah dilakukan uji signifikansi parameter model ARIMA pada model (2, 1, 2) dan model ARIMA (0, 1, 1). Tahap selanjtnya adalah melakukan uji asumsi white noise yaitu dengan syarat jika nilai p-value > alpha (0,05) maka di katakana white noise, namun jika p-value < alpha (0,05) maka tidak dapat dikatakan white noise.

Tabel 3. Hasil uji white noise pada model ARIMA (1, 1, 1).

Lag	P-value	Keterangan
12	0,068	White Noise
24	0,112	White Noise
36	0,444	White Noise
48	0,540	White Noise

Tabel 4. Hasil uji white noise pada model ARIMA (2, 1, 1)

Lag	P-value	Keterangan
12	0,035	Tidak White Noise
24	0,112	White Noise
36	0,472	White Noise
48	0,448	White Noise

Tabel 5. Hasil uji white noise pada model ARIMA (2, 1, 0)

Lag	P-value	Keterangan
12	0,017	Tidak White Noise
24	0,044	Tidak White Noise

36	0,280	White Noise
48	0,425	White Noise

Tabel. 6. Hasil uji white noise pada model ARIMA (1, 1, 0)

Lag	P-value	Keterangan
12	0,027	Tidak White Noise
24	0,103	White Noise
36	0,404	White Noise
48	0,388	White Noise

Tabel 7. Hasil uji white noise pada model ARIMA (0, 0, 1)

Lag	P-value	Keterangan
12	0,045	Tidak White Noise
24	0,138	White Noise
36	0,472	White Noise
48	0,470	White Noise

Tabel 8. Hasil uji white noise pada model ARIMA (2, 1, 2)

Lag	P-value	Keterangan
12	0,010	Tidak White Noise
24	0,047	Tidak White Noise
36	0,307	Tidak White Noise
48	0,431	Tidak White Noise

Setelah di lakukan uji white noise pada beberapa model ARIMA diperoleh modelARIMA (1, 1, 1) sebagai model terbaik. Langkah selanjutnya yantu mengecek normalitas dari model residual kemudian dilakukan uji Kolmogorov-Smirnov.

Pemilihan Model Terbaik

Berdasarkan hasil diagnostic model, diperoleh model ARIMA (1, 1, 1) sebagai model Arima terbaik. Bentuk umum model ARIMA (1, 1, 1) dapat ditulis secara matematis dalam bentuk persamaan berikut dengan menggunakan nilai p = 1, d = 1, dan q = 1.

$$(1 - B)^{d} Z_{t} = \mu + \theta_{q}(B^{d}) a_{t}$$

$$(1 - B) Z_{t} = \mu + \theta_{1}(B) a_{t}$$

$$(1 - B) Z_{t} = \mu + (1 - \theta_{1}B) a_{t}$$

$$Z_{t} - Z_{t-1} = \mu + a_{t} - \theta_{1}a_{t-1}$$

$$Z_{t} = Z_{t-1} + 1.0 + a_{t} - (0.698) a_{t-1}$$

$$Z_t = Z_{t-1} + 22,66 + a_t - 0,9765a_{t-1}$$

Peramalan

Pada tahap akhir, menggunakan model ARIMA terbaik (1, 1, 1) yang sudah mencapai tahapan pengujian untuk meramalkan nilai ekspor batu bara di provinsi jambi.

Tabel.9 Hasil peramalan nilai ekspor batu-bara provinsi jambi

Forecasts from Time Period 116

			95% L	imits.	
Time Period	Forecast	SE Forecast	Lower	Upper	Actual
117	5945804	6404933	-6610394	18502002	
118	6392317	8201707	-9686267	22470901	
119	6606385	9359134	-11741214	24953983	
120	6709013	10263957	-13412395	26830421	
121	675821.	11042359	-14889169	28405600	
122	6781804	11746130	-16245249	29808857	
123	6793113	12399614	-17515027	51101253	
124	6798535	13015601	-18717183	32314253	
125	6801134	1360155	-1986328.	3465555	
12.	6802380	14162292	-20961305	34566065	
127	6802978	14701197	-22017173	55623129	
128	6803264	15220820	-23035554	56642082	
129	6803401	15723181	-24020243	5762704.	
130	6803467	1620993.	-24974408	38581343	
131	6803499	16682472	-25900735	9507732ء	
132	6803514	17141978	-26801532	40408560	
133	6803521	17589479	-27678803	4128584.	
134	6803525	18025871	-28534302	42141351	
135	680352.	18451945	-29369573	4297662.	
13.	6803527	18868400	-30185988	43793042	

Uji Validitas

Validitas merupakan produk dari validasi. Validasi adalah suatu proses yang dilakukan oleh penyusun atau pengguna untuk mengumpulkan data secara empiris guna mendukung kesimpulan yang dihasilkan oleh skor pengguna. Sedangkan validitas adalah kemampuan suatu alat ukur untuk mengukur sasaran ukurnya. Dalam mengukur validitas perhatian ditujukan pada isi dan kegunaan pengguna instrumen. Uji validitas dimaksudkan guna mengukur seberapa baik mengukur seberapa baik suatu tes menjalankan fungsinya dan apakah instrumen yang bersangkutan benar-benar dapat mengukur apa yang hendak diukur. Uji ini dimaksudkan untuk mengukur efektif atau tidaknya suatu kuesioner. Pada dasarnya, uji validitas mengukur efektif atau tidaknya setiap pertanyaan/pernyataan. Kriteria uji untuk uji validitas adalah sebagai berikut:

- Jika r hitung > r tabel maka instrumen penelitian dianggap valid.
- Jika r hitung < r tabel maka instrumen penelitian dianggap tidak valid.

$$Rxy = \frac{n \Sigma x_1 y - (\Sigma x_1)(\Sigma y)}{\sqrt{\{n \Sigma x_1^2 - (\Sigma x_1)^2\}\{n \Sigma y^2 - (\Sigma y)^2\}}}$$

Multi Proximity: Jurnal Statistika Universitas Jambi Vol. 3 No. 1 - Juni 2024

Tabel.10 Pertanyaan kuisioner untuk responden

No	Pertanyaan
1	Apakah Anda mengetahui tentang kegiatan ekspor batu bara di Provinsi Jambi?
2	Menurut Anda, seberapa penting kegiatan ekspor batu bara bagi perekonomian Provinsi Jambi?
3	Menurut Anda, Aapakah permintaan Global memengaruhi nilai ekspor batu bara dari Provinsi Jambi?
4	Menurut Anda, seberapa besar pengaruh nilai ekspor batu bara terhadap pendapatan masyarakat Provinsi Jambi?
5	Menurut Anda apakah harga batu bara dunia memengaruhi nilai ekspor batu bara dari Provinsi Jambi?
6	Menurut Andaapakah biaya produksi memengaruhi nilai ekspor batu bara dari Provinsi Jambi?
7	Menurut Anda apakah infrastruktur memengaruhi nilai ekspor batu bara dari Provinsi Jambi?
8	Menurut Anda apakah kebijakan pemerintah memengaruhi nilai ekspor batu bara dari Provinsi Jambi?
9	Menurut Anda, apakah kegiatan ekspor batu bara memberikan dampak positif bagi masyarakat Provinsi Jambi?
10	Menurut Anda, seberapa besar pengaruh nilai ekspor batu bara terhadap pendapatan masyarakat Provinsi Jambi?

Tabel 11. Hasil perhitungan Uji Validitas

No.	R hitung	R table (45%)	Keterangan
1	0,532338	0,294	Valid
2	0,65051	0,294	Valid
3	0,652084	0,294	Valid
4	0,167649	0,294	Tidak Valid
5	0,70969	0,294	Valid
6	0,659803	0,294	Valid
7	0,193031	0,294	Tidak Valid
8	0,467609	0,294	Valid
9	0,048849	0,294	Tidak Valid
10	0,08391	0,294	Tidak Valid

Tabel 12. Hasil Uji Validitas Menggunakan Aplikasi SPSS

	Correlations											
		Soal1	Soal2	Soal3	Soal4	Soal5	Soal6	Soal7	Soal8	Soal9	Soal10	JumlahTotal_ Y
Soal1	Pearson Correlation	1	,141	,154	-,145	,328	,349	,001	-,009	-,210	-,326	,532
	Sig. (2-tailed)		,356	,311	,342	,028	,019	,993	,955	,166	,029	,000
	N	45	45	45	45	45	45	45	45	45	45	45
Soal2	Pearson Correlation	,141	1	,399	,175	,416	,356	-,058	,071	,107	,160	,641
	Sig. (2-tailed)	,356		,007	,250	,004	,016	,704	,643	,483	,292	,000
	N	45	45	45	45	45	45	45	45	45	45	45
Soal3	Pearson Correlation	,154	,399	1	,252	,180	,123	,309	,172	,207	-,016	,562
	Sig. (2-tailed)	,311	,007		,095	,236	,421	,039	,258	,172	,914	,000
	N	45	45	45	45	45	45	45	45	45	45	45
Soal4	Pearson Correlation	-,145	,175	,252	1	-,149	-,008	,182	,123	,312	,054	.168
	Sig. (2-tailed)	,342	,250	,095		,328	,957	,232	,422	,037	,723	,271
	N	45	45	45	45	45	45	45	45	45	45	45
Soal5	Pearson Correlation	,328	,416	,180	-,149	1	,683	-,100	,360	-,315 [°]	-,160	,710
	Sig. (2-tailed)	,028	,004	,236	,328		,000	,513	,015	,035	,293	,000
	N	45	45	45	45	45	45	45	45	45	45	45
Soal6	Pearson Correlation	,349	,356	,123	-,008	,683	1	-,018	,201	-,283	-,189	,660**
	Sig. (2-tailed)	,019	,016	,421	,957	,000		,907	,185	,060	,214	,000
	N	45	45	45	45	45	45	45	45	45	45	45
Soal7	Pearson Correlation	,001	-,058	,309	,182	-,100	-,018	1	-,006	,059	-,003	,193
	Sig. (2-tailed)	,993	,704	,039	,232	,513	,907		,969	,700	,986	,204
	N	45	45	45	45	45	45	45	45	45	45	45
Soal8	Pearson Correlation	-,009	,071	,172	,123	,360	,201	-,006	1	,178	,230	,468
	Sig. (2-tailed)	,955	,643	,258	,422	,015	,185	,969		,243	,129	,001
	N	45	45	45	45	45	45	45	45	45	45	45
Soal9	Pearson Correlation	-,210	,107	,207	,312	-,315	-,283	,059	,178	1	,240	,049
	Sig. (2-tailed)	,166	,483	,172	,037	,035	,060	,700	,243		,113	,750
	N	45	45	45	45	45	45	45	45	45	45	45

Uji Reliabilitas

Uji reliabilitas mengukur variabel-variabel yang digunakan berdasarkan pertanyaan/pernyataan yang digunakan. Uji reliabilitas dilakukan dengan membandingkan tingkat signifikansi menggunakan nilai Cronbach alpha. Tingkat signifikansi/level yang digunakan adalah 0,5, 0,6 hingga 0,7 tergantung kebutuhan penelitian.Kriteria tesnya adalah: Instrumen dikatakan reliabel jika nilai Cronbach alpha > signifikan. Jika nilai Cronbach's alpha < tingkat signifikan, perangkat dianggap tidak dapat diandalkan.

Diketahui:

$$k = 10$$

$$\Sigma \sigma_b^2 = 3,09697$$

$$\Sigma \sigma_b^2 = 5,967677$$

$$r = \left[\frac{k}{k-1}\right] \left[1 - \frac{\Sigma \sigma_b^2}{\Sigma \sigma_t^2}\right]$$

$$= \left[\frac{10}{10-1}\right] \left[1 - \frac{3,09697}{5,967677}\right]$$

$$= \left[\frac{10}{9}\right] \left[1 - 0,51896\right]$$

$$= \left[1,11111\right] \left[0,48104\right]$$

= 0,53449

Diperoleh nilai Cronbach alfa (uji reliabilitas) sebesar 0,53449

Hasil ini terletak pada interval 0,5 – 0,789 sehingga kuesioner ini dinyatakan layak

Uji Reliabilitas Menggunakan SPSS

Tabel 13. Hasil Uji Realibilitas Menggunakan Aplikasi SPSS

Scale: ALL VARIABLES

Case Processing Summary

		N	%
Cases	Valid	45	100,0
	Excluded ^a	0	,0
	Total	45	100,0

 Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's	
Alpha	N of Items
,534	10

Simpulan

Berdasarkan Analisis yang sudah dilakukan didapati hasil bahwa hasil peramalan 10 tahun kedepan dengan Metode Arima didapati model ARIMA terbaik (1, 1, 1) yang sudah mencapai tahapan pengujian untuk meramalkan nilai ekspor batu bara di provinsi jambi. Berdasarkan uji validitas yang dilakukan diketahui bahwa sebanyak 6 soal dinyatakan valid dan 4 soal dinyatakan tidak valid. Sedangkan Uji reliabilitas mengukur variabel-variabel yang digunakan berdasarkan pertanyaan/pernyataan, dengan membandingkan tingkat signifikansi menggunakan nilai Cronbach alpha, Tingkat signifikansi/level yang digunakan adalah 0,5, 0,6 hingga 0,7 tergantung kebutuhan penelitian. Berdasarkan uji reliabilitas yang dilakukan didapatkan bahwa kuesioner yang digunakan layak dengan nilai cronbach alfa sebesar 0,53449. Memanfaatkan teknologi dalam peramalan nilai ekspor tetapi juga berkontribusi pada peningkatan ekonomi penduduk Provinsi Jambi melalui pengembangan technopreneurship berbasis data dan teknologi. Oleh karena itu, pemanfaatan yang perlu dilakukan berbasis Technopreneurship yaitu membangun aplikasi berbasis web atau mobile berbayar yang memungkinkan pelaku usaha dan pemerintah untuk memonitor nilai ekspor batu bara secara real-time berdasarkan hasil peramalan ARIMA.Fitur tambahan seperti prediksi tren pasar, pengelolaan risiko, dan analisis dampak terhadap perekonomian lokal.

RUJUKAN

- [1] Afin, A. P., & Kiono, B. F. T. (2021). Potensi Energi Batubara serta Pemanfaatan dan Teknologinya di Indonesia Tahun 2020 2050: Gasifikasi Batubara. *Jurnal Energi Baru dan Terbarukan*, 2(2), 144–122. https://doi.org/10.14710/jebt.2021.11429
- [2] Atman Maulana, H. (2018). *PEMODELAN DERET WAKTU DAN PERAMALAN CURAH HUJAN PADA DUA BELAS STASIUN DI BOGOR* (Vol. 15, Nomor 1).
- [3] Ayu Wulandari dan Rahmat Gernowo, R. (2019). METODE AUTOREGRESSIVE INTEGRATED MOVINGAVERAGE (ARIMA) DAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) DALAM ANALISIS CURAH HUJAN (Vol. 22, Nomor 1).
- [4] Azizah A', I. A., & Soelistyo, A. (2022). Analisis Faktor-Faktor yang Mempengaruhi Ekspor Batubara Indonesia Tahun 2014-2020. Dalam *Jurnal Ilmu Ekonomi (JIE)* (Vol. 6, Nomor 4).
- [5] Dai, C. (2023). A method of forecasting trade export volume based on back-propagation neural network. *Neural Computing and Applications*, 35(12), 8775–8784. https://doi.org/10.1007/s00521-022-07693-5
- [6] Deviana, S., Azis, D., Pandri Ferdias, dan, Ir Sumantri Brojonegoro No, J., Meneng, G., & Lampung, B. (2021). Analisis Model Autoregressive Integrated Moving Average Data Deret Waktu Dengan Metode Momen Sebagai Estimasi Parameter. Dalam *Jurnal Siger Matematika* (Vol. 02, Nomor 02).
- [7] Hardianto, R. (t.t.). PERAMALAN PENJUALAN TEH HIJAU DENGAN METODE ARIMA (STUDI KASUS PADA PT. MK) (Vol. 3).
- [8] Hodijah, S., Patricia Angelina, G., Ekonomi dan Bisnis, F., & Jambi, U. (2021). ANALISIS PENGARUH EKSPOR DAN IMPOR TERHADAP PERTUMBUHAN EKONOMI DI INDONESIA. *Jurnal Manajemen Terapan dan Keuangan (Mankeu)*, 10(01).
- [9] Karuniawati, W., Riski, I. M., Latifah, D. Y., Khasanah, N., & Achidsti, A. (t.t.). Strategi Kebijakan Peningkatan Ekspor untuk Menjaga Kestabilan Pertumbuhan Ekonomi Indonesia. *Journal of Public Policy and Administration Research Volume 01 No 02* https://journal.student.uny.ac.id/index.php/joppar
- [10] Khuzaifah, E., & Junita, R. (2021). Analisis Indeks Kepuasan Masyarakat dan Peramalan Pendapatan Laboratorium Pengujian PPSDM Migas Menggunakan Metode Arima Box-Jenkins. *Majalah Ilmiah Swara Patra*, 11(1). https://doi.org/10.37525/sp/2021-1/276
- [11] Kusnadi, D., Sos, S., & Ghaffari, M. B. (t.t.). PENGAWASAN PERWAKILAN DIREKTORAT JENDERAL MINERAL DAN BATUBARA KEMENTRIAN ENERGI DAN SUMBER DAYA MINERAL PADA PT. GEA LESTARI DI PROVINSI JAMBI SKRIPSI Ditujukan Untuk Melengkapi Salah Satu Syarat Guna Memperolah Gelar Sarjana Strata Satu (S.1) dalam Ilmu Pemerintahan pada Fakultas Syariah OLEH: GUSTIN KURNIA NINGSIH NIM: 105190118 Pembimbing.
- [12] Lusiana, A., & Yuliarty, P. (t.t.). PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X.
- [13] Bunga Mardhotillah, Zurweni, Edi Elisa, Khairul Alim. (2023). Relation Visualization of Environmental Quality Index with Environmental Resource Indicators Using Multiple Indicators Multiple Causes Model. *Multi Proximity: Jurnal Statistika. 2(2)*.
- [14] Masa, A. P. A., Prafanto, A., & Setyadi, H. J. (2024). Peramalan Ekspor Batu Bara Indonesia Menggunakan Metode Double Exponential Smoothing Brown. *MALCOM: Indonesian Journal of Machine Learning and Computer Science*, 4(3), 1139–1147. https://doi.org/10.57152/malcom.v4i3.1552
- [15] Pahlevi, R., Thamrin, S., Ahmad, I., & Nugroho, F. B. (2024). Masa Depan Pemanfaatan Batubara sebagai Sumber Energi di Indonesia. *Jurnal Energi Baru dan Terbarukan*, 5(2), 50–60. https://doi.org/10.14710/jebt.2024.22973

- [16] Puspita Sari, A., Rahmadini, G., Carlina, H., Irsan Ramadan, M., & Egi Pradani, Z. (2023). ANALISIS MASALAH KEPENDUDUKAN DI INDONESIA. Dalam *Journal of Economic Education* (Vol. 2, Nomor 1).
- [17] Soejoeti, Z. (1987). Analisis Runtun Waktu. Universitas Terbuka.
- [18] Bunga, B. M., Zuli Rodhiyah, Revis Asra, Zurweni, & Edi Elisa. (2024). Peningkatan Kompetensi dan Skill Petugas Statistik Diskominfo Provinsi Jambi melalui Pelatihan Penggunaan Software Mortpak dan PAST 4.03 serta Platform Canva. Jurnal Pengabdian Masyarakat Dan Riset Pendidikan, 2(4), 324–332. https://doi.org/10.31004/jerkin.v2i4.275
- [19] Suci Pujiani Prahesti, Itasia Dina Sulvianti, & Yenni Angraini. (2023). PERAMALAN HARGA BATU BARA ACUAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE DAN FUNGSI TRANSFER. *Xplore: Journal of Statistics*, 12(1), 1–11. https://doi.org/10.29244/xplore.v12i1.1100
- [20] Wei, W. (2006). *Time Series Analysis: Univariate and Multi inpute Methods*. Pearson Education Inc.
- [21] Hortikultura Menggunakan ARIMA. Multi Proximity: Jurnal Statistika. 2 (2). 59 70.
- [22] Panjaitan, A. S., Maretha, M. R., Hilmiah, H., Mardhotillah, B. (2023). Optimalisasi Penerapan Metode ARIMA dalam Mengestimasi Harga Emas di Negara Indonesia, Jurnal Ekonomi dan Statistik Indonesia, 3 (2), 136 146.