Isolation and characterization of microcrystalline cellulose from tangkit pineapple leaves (ACT-MCC) as a pharmaceutical excipient
DOI:
https://doi.org/10.22437/proca.v1i2.50265Keywords:
Tangkit pineapple leaves, MCC, ATC-MCC, Physicochemical Characterization, Pharmaceutical excipientAbstract
Background: Microcrystalline cellulose (MCC) is a widely used pharmaceutical excipient due to its high compressibility, stability, and inertness in tablet formulations. Tangkit pineapple leaves (Ananas comosus), an abundant agricultural waste in Jambi, Indonesia, offer a sustainable alternative source for cellulose. Objective: This study reports the preparation and characterization of microcrystalline cellulose (ACT-MCC) derived from Tangkit pineapple leaves, as well as its physicochemical characteristics in comparison to the commercial standard, Avicel PH 102. Methods: MCC was prepared from α-cellulose isolated from dried Tangkit pineapple leaves through sequential alkali treatment, bleaching, and acid hydrolysis. Results: From 200 g of dried raw material, 19.41% (w/w) α-cellulose was obtained, which was then converted to 75% (w/w) MCC, equivalent to 14.56% of the starting material. The resulting ACT-MCC had a melting point of 247-250°C, slightly lower than Avicel PH 102 (268-270 °C). Physicochemical analysis showed a pH of 7.51, total ash 0.318% (w/w), moisture 3.13% (w/w), and drying loss of 3.42% (w/w), all within pharmacopeial limits. ACT-MCC was comparatively fine, odourless, tasteless, and yellowish in appearance. Conclusion: ATC-MCC demonstrated comparable characteristics to commercial MCC, indicating its potential usage as a locally derived pharmaceutical excipient.
Downloads
References
[1] Viera-Herrera C, Santamaría-Aguirre J, Vizuete K, Debut A, Whitehead DC, Alexis F. Microcrystalline Cellulose Extracted from Native Plants as an Excipient for Solid Dosage Formulations in Drug Delivery. Nanomaterials [Internet]. 2020 May 19 [cited 2025 Oct 31];10(5):975. Available from: https://www.mdpi.com/2079-4991/10/5/975
[2] Adeleye OA, Bamiro OA, Albalawi DA, Alotaibi AS, Iqbal H, Sanyaolu S, et al. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials [Internet]. 2022 Aug 30 [cited 2025 Oct 31];15(17):5992. Available from: https://www.mdpi.com/1996-1944/15/17/5992
[3] Nawangsari D, Yohana Chaerunisaa A, Abdassah M, Sriwidodo S, Rusdiana T, Apriyanti L. Isolation and Phisicochemical Characterization of Microcristalline Cellulose from Ramie (Boehmeria nivea L. Gaud) Based on Pharmaceutical Grade Quality. IJPST [Internet]. 2018 Feb 23 [cited 2025 Oct 31];5(2):55. Available from: http://jurnal.unpad.ac.id/ijpst/article/view/15040
[4] Emeje M, Ekpo M, Olayemi O, Isimi C, Buraghoin A. Physicochemical and drug release properties of microcrystalline cellulose derived from Musa balbisiana. Polímeros [Internet]. 2020 [cited 2025 Oct 31];30(1):e2020010. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282020000100407&tlng=en
[5] Adeleye OA, Bamiro OA, Albalawi DA, Alotaibi AS, Iqbal H, Sanyaolu S, et al. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. Materials [Internet]. 2022 Aug 30 [cited 2025 Oct 31];15(17):5992. Available from: https://www.mdpi.com/1996-1944/15/17/5992
[6] Mazlan MM, Kian LK, Fouad H, Jawaid M, Karim Z, Saba N. Synthesis and characterization of carboxymethyl cellulose from pineapple leaf and kenaf core biomass: a comparative study of new raw materials. Biomass Conv Bioref [Internet]. 2024 July [cited 2025 Oct 31];14(13):14653–63. Available from: https://link.springer.com/10.1007/s13399-022-03700-w
[7] Ohwoavworhua F, Uya I, Kunle O, Kunle O. Isolation and characterization of microcrystalline cellulose obtained from palm nut (Elaeis guineensis) fibres. Journal of Pharmaceutical and Allied Sciences. 2006 Apr 21;3(1):255–62. Available from: http://www.ajol.info/index.php/jophas/article/view/34987
[8] Cahyaningrum PL, Sudaryati NLG, Bogoriani NW, Asih IARA, Adnyana IMDM, Jenar PD. Phytochemical Profiling, Antibacterial Properties and Toxicity of Amla Fruit Tea (Phyllanthus emblica L.): An In Vitro and In Silico Study. J. Multidiscip. Appl. Nat. Sci. [Internet]. 2025;5(3):799-822. https://doi.org/10.47352/jmans.2774-3047.284
[9] Moreno G, Ramirez K, Esquivel M, Jimenez G. Biocomposite Films of Polylactic Acid Reinforced with Microcrystalline Cellulose from Pineapple Leaf Fibers. Journal of Renewable Materials [Internet]. 2019 [cited 2025 Oct 31];7(1):9–20. Available from: https://www.techscience.com/jrm/v7n1/30516
[10] Sainorudin MH, Abdullah NA, Asmal Rani MS, Mohammad M, Mahizan M, Shadan N, et al. Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies. Nanotechnology Reviews [Internet]. 2021 Aug 9 [cited 2025 Oct 10];10(1):793–806. Available from: https://www.degruyter.com/document/doi/10.1515/ntrev-2021-0053/html
[11] Sinsukudomchai P, Aht-Ong D, Honda K, Napathorn SC. Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. Koller M, editor. PLoS ONE [Internet]. 2023 Mar 3 [cited 2025 Oct 31];18(3):e0282311. Available from: https://dx.plos.org/10.1371/journal.pone.0282311
[12] Lestari YPI, Mi’rajunnisa, Rahmawati. Isolation and Characterization of α-Cellulose From Beluntas Leaves ( Pluchea Indica L.) Residue as Source of Microcrystalline Cellulose. Dewi PEN, Turongkaravee S, Endang Lukitaningsih RR, Pathak YV, Saini B, Jantan DI, et al., editors. BIO Web Conf [Internet]. 2024 [cited 2025 Oct 31];135:01003. Available from: https://www.bio-conferences.org/10.1051/bioconf/202413501003
[13] Nickyta Sidabutar E, Suryahartati D, Oktaviarni F. Optimalisasi Hak Ekonomi Nanas Tangkit Baru Jambi Sebagai Produk Indikasi Geografis. Law [Internet]. 2024 Feb 26 [cited 2025 Oct 10];5(1):12–27. Available from: https://online-journal.unja.ac.id/Zaaken/article/view/31944
[14] Belali NG, Chaerunisaa AY, Rusdiana T. Isolation and Characterization of Microcrystalline Cellulose Derived from Plants as Excipient in Tablet : A Review. Indo J Pharm [Internet]. 2019 May 17 [cited 2025 Oct 31];1(2). Available from: http://jurnal.unpad.ac.id/idjp/article/view/21515
[15] Zhao H, Shi C, Zhao L, Wang Y, Shen L. Influences of different microcrystalline cellulose (MCC) grades on tablet quality and compression behavior of MCC-lactose binary mixtures. Journal of Drug Delivery Science and Technology [Internet]. 2022 Nov [cited 2025 Oct 10];77:103893. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224722008048
[16] Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers [Internet]. 2014 Apr [cited 2025 Oct 10];104:223–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861714000678
[17] Suryadi H, Sutriyo S S, Angeline M, Murti MW. Characterization of Microcrystalline Cellulose Obtained from Enzymatic Hydrolysis of Alpha-Cellulose and its Application. JYP [Internet]. 2018 July 13 [cited 2025 Oct 10];10(2s):S87–92. Available from: https://archives.jyoungpharm.org/article/1232
[18] Fouad H, Jawaid M, Karim Z, Meraj A, Abu-Jdayil B, Nasef MM, et al. Preparation and characterization of carboxymethyl microcrystalline cellulose from pineapple leaf fibre. Sci Rep [Internet]. 2024 Oct 7 [cited 2025 Oct 31];14(1):23286. Available from: https://www.nature.com/articles/s41598-024-73860-4
[19] Nasution H, Yurnaliza, Veronicha, Irmadani, Sitompul S. Preparation and Characterization of Cellulose Microcrystalline (MCC) from Fiber of Empty Fruit Bunch Palm Oil. IOP Conf Ser: Mater Sci Eng [Internet]. 2017 Mar [cited 2025 Oct 10];180:012007. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/180/1/012007
[20] Rana RH, Rana MdS, Tasnim S, Haque MR, Kabir S, Amran MdS, et al. Characterization and tableting properties of microcrystalline cellulose derived from waste paper via hydrothermal method. j app pharm sci [Internet]. 2022 June 5 [cited 2025 Oct 10];140–7. Available from: https://japsonline.com/abstract.php?article_id=3602&sts=2
[21] Veshohilova TP. [Effect of combined use of steroid preparations with pyrroxane on the gonadotropic function of the hypophysis]. Akush Ginekol (Mosk). 1975 Oct;(10):10–2.
[22] Sainorudin MH, Abdullah NA, Asmal Rani MS, Mohammad M, Mahizan M, Shadan N, et al. Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies. Nanotechnology Reviews [Internet]. 2021 Aug 9 [cited 2025 Oct 31];10(1):793–806. Available from: https://www.degruyter.com/document/doi/10.1515/ntrev-2021-0053/html
[23] Nawangsari P, Fatra W, Kusuma A, Badri M, P.C1 DR, Masnur D. Microcellulose From Pineapple Leaf Fiber as a PotentialSustainable Material: Extraction And Characterization. JPL [Internet]. 2024 Feb 29 [cited 2025 Oct 31];22(1):83. Available from: https://e-jurnal.pnl.ac.id/polimesin/article/view/4522
[24] Muhammad Gunawan, Nanda Lestari. Pembuatan Hidrogel Berbasis Mikrokristal Selulosa Daun Nanas (Ananas comosus L. Merr) dengan Variasi Volume Glutaraldehid. jisk [Internet]. 2020 Dec 31 [cited 2025 Oct 31];1(1):12–7. Available from: https://ejournal.sumateraconnect.or.id/index.php/jisk/article/view/3
[25] Oluwasina OO, Lajide L, Owolabi B. Microcrystalline Cellulose from Plant Wastes through Sodium Hydroxide-Anthraquinone-Ethanol Pulping. BioResources [Internet]. 2014 Aug 26 [cited 2025 Oct 31];9(4):6166–92. Available from: https://bioresources.cnr.ncsu.edu/resources/microcrystalline-cellulose-from-plant-wastes-through-sodium-hydroxide-anthraquinone-ethanol-pulping/
[26] Sharma MK, Diwan A, Sardana S, Kumar K. Derivation of hazardous wastes: Pharmaceutical and food applications. Foods and Raw Materials [Internet]. 2024 Dec 25 [cited 2025 Oct 31];104–16. Available from: https://jfrm.ru/en/issues/23173/23297/
[27] Fouad H, Jawaid M, Karim Z, Meraj A, Abu-Jda B, Nasef MM, et al. Preparation and Characterization of Carboxymethyl Microcrystalline Cellulose from Pineapple Leaf Fibre [Internet]. In Review; 2024 [cited 2025 Oct 31]. Available from: https://www.researchsquare.com/article/rs-4009721/v1
[28] Fitriani F, Aprilia S, Arahman N, Bilad MR. Effect of Acid Concentration on the Properties of Microcrystalline Cellulose from Pineapple Crown Leaf. J Rekayasa Kim Lingkung [Internet]. 2022 May 13 [cited 2025 Oct 31];17(1):1–7. Available from: https://jurnal.usk.ac.id/RKL/article/view/21010
[29] United Nations Economic Commission for Europe. Environmental Performance Review: Romania: Third Review [Internet]. United Nations; 2022 [cited 2025 Oct 31]. (ECE Environmental Performance Reviews Series). Available from: https://www.un-ilibrary.org/content/books/9789210010382
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Novia Tri Astuti, M. Rifqi Efendi, Nurul Kamilah Sadli, Marizki Pondawinata, Cintasa Nabila Ladianti, Ela Apriani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Published with license by LPPM Universitas Jambi. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0 International). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator.







