Establishing a cost-effective tetra-primer amplification refractory mutation system PCR for genotyping the apolipoprotein-A5 -1131T>C polymorphism: a preliminary study for genetic association analysis in the Jambi Malay population
DOI:
https://doi.org/10.22437/proca.v1i2.50262Keywords:
APOA5 -1131T>C Polymorphism, T-ARMS PCR, Genotyping, Annealing Temperature, Optimization, Cost-Effective, Jambi MalayAbstract
Background: The Apolipoprotein A5 (APOA5) gene's -1131T>C polymorphism is a significant genetic marker for dyslipidemia, with effects varying across ethnicities. Investigating this in specific populations like the Jambi Malay requires genotyping methods that are both reliable and feasible for large-scale studies, often in limited-resource settings. Methods: DNA was extracted from blood samples using a solid-phase column extraction method and subsequently diluted. Four specific primers (two outer and two inner allele-specific) for the T-ARMS PCR assay were designed. The PCR protocol was optimized by varying the annealing temperature, while other parameters like initial denaturation (95°C) and extension (72°C) were kept constant based on standard literature. Amplified products were visualized using gel electrophoresis. Results: An optimized T-ARMS PCR protocol was successfully established. The assay produced clear and distinct banding patterns on a 2.0% agarose gel, allowing for unambiguous genotype calling. Homozygous wild-type (TT) samples showed two bands (512 bp control and 355 bp T-allele), homozygous variant (CC) samples showed two bands (512 bp control and 194 bp C-allele), and heterozygous (TC) samples showed three bands (512 bp, 355 bp, and 194 bp). The assay demonstrated high specificity with no non-specific amplification at an optimal annealing temperature of 59°C. Conclusion: The developed T-ARMS PCR assay is a robust, cost-effective, and reliable method for genotyping the APOA5 rs662799 polymorphism. This tool is well-suited for large-scale molecular epidemiological studies to investigate the genetic architecture of dyslipidemia in the Jambi Malay and other resource-limited settings.
Downloads
References
[1] World Health Organization. Cardiovascular diseases (CVDs). World Health Organization 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed October 31, 2025).
[2] Zhao H-L, You Y, Tian Y, Wang L, An Y, Zhang G, et al. Impact of LDLR polymorphisms on lipid levels and atorvastatin’s efficacy in a northern Chinese adult Han cohort with dyslipidemia. Lipids Health Dis 2024;23:106. https://doi.org/10.1186/s12944-024-02101-4.
[3] Mitsis A, Khattab E, Kyriakou M, Sokratous S, Sakellaropoulos SG, Tzikas S, et al. Genomic and Precision Medicine Approaches in Atherosclerotic Cardiovascular Disease: From Risk Prediction to Therapy—A Review. Biomedicines 2025;13:1723. https://doi.org/10.3390/biomedicines13071723.
[4] Bennett DA, Holmes M V. Mendelian randomisation in cardiovascular research: an introduction for clinicians. Heart 2017;103:1400–7. https://doi.org/10.1136/heartjnl-2016-310605.
[5] Perkumpulan Endokrinolgi Indonesia (PERKENI). Pedoman Pengelolaan Dislipidemia di Indonesia. Jakarta: PB Perkeni; 2019.
[6] Freund MK, Burch KS, Shi H, Mancuso N, Kichaev G, Garske KM, et al. Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. The American Journal of Human Genetics 2018;103:535–52. https://doi.org/10.1016/j.ajhg.2018.08.017.
[7] Meena D, Huang J, Zare M, Hasbani NR, Romuald BP, Mustafa R, et al. Genome-wide association study and multi-ancestry meta-analysis identify common variants associated with carotid artery intima-media thickness 2025. https://doi.org/10.1101/2025.04.11.25325582.
[8] Cecelja M, Lewis CM, Shah AM, Chowienczyk P. Cardiovascular health and risk of hospitalization with COVID-19: A Mendelian Randomization study. JRSM Cardiovasc Dis 2021;10. https://doi.org/10.1177/20480040211059374.
[9] Guo X, Zhang K, Sun Y, Dong R. Causal Association of Chronic Venous Insufficiency and Cardiovascular Diseases: A Univariable and Multivariable Mendelian Randomization Study. Rev Cardiovasc Med 2024;25. https://doi.org/10.31083/j.rcm2510357.
[10] Wu Y, Yu Y, Zhao T, Wang S, Fu Y, Qi Y, et al. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5 Gene Cluster Gene Polymorphisms with Metabolic Syndrome. PLoS One 2016;11:e0147946. https://doi.org/10.1371/journal.pone.0147946.
[11] Abudureyimu S, Abulaiti P, Xing Z, Li H, Liu SS, Li W, et al. The Effect of Four Different Single Nucleotide Polymorphisms on Coronary Heart Disease in a Han Chinese Population in Xinjiang Region 2021. https://doi.org/10.21203/rs.3.rs-552843/v1.
[12] Hubacek JA. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology. Gene 2016;592:193–9. https://doi.org/10.1016/j.gene.2016.07.070.
[13] Hanh NTH, Nhung BT, Hop LT, Tuyet LT, Dao DTA, Thu NTT, et al. The APOA5 ‐rs662799 Polymorphism Is a Determinant of Dyslipidemia in Vietnamese Primary School Children. Lipids 2020;55:683–91. https://doi.org/10.1002/lipd.12270.
[14] Kim M, Kim M, Yoo HJ, Bang YJ, Lee S, Lee JH. Apolipoprotein A5 gene variants are associated with decreased adiponectin levels and increased arterial stiffness in subjects with low high‐density lipoprotein‐cholesterol levels. Clin Genet 2018;94:438–44. https://doi.org/10.1111/cge.13439.
[15] Wang Y, Liu F, Li L, Deng S, He Z. The association between apolipoprotein A1-C3-A5 gene cluster promoter polymorphisms and risk of ischemic stroke in the northern Chinese Han population. Journal of International Medical Research 2017;45:2042–52. https://doi.org/10.1177/0300060517713517.
[16] Mozafari S, Ashoori M, Emami Meybodi SM, Solhi R, Mirjalili SR, Firoozabadi AD, et al. Association between APOA5 polymorphisms and susceptibility to metabolic syndrome: a systematic review and meta-analysis. BMC Genomics 2024;25:590. https://doi.org/10.1186/s12864-024-10493-x.
[17] Vrablík M, Hubacek JA, Dlouha D, Satny M, Adamkova V, Ceska R. Strong Association between APOA5 Gene Polymorphisms and Hypertriglyceridaemic Episodes. Folia Biol (Praha) 2019;65:188–94. https://doi.org/10.14712/fb2019065040188.
[18] Han Y, Dorajoo R, Chang X, Wang L, Khor C-C, Sim X, et al. Genome-wide association study identifies a missense variant at APOA5 for coronary artery disease in Multi-Ethnic Cohorts from Southeast Asia. Sci Rep 2017;7:17921. https://doi.org/10.1038/s41598-017-18214-z.
[19] Mörseburg A, Pagani L, Ricaut F-X, Yngvadottir B, Harney E, Castillo C, et al. Multi-layered population structure in Island Southeast Asians. European Journal of Human Genetics 2016;24:1605–11. https://doi.org/10.1038/ejhg.2016.60.
[20] Vallée F, Luciani A, Cox MP. Reconstructing Demography and Social Behavior During the Neolithic Expansion from Genomic Diversity Across Island Southeast Asia. Genetics 2016;204:1495–506. https://doi.org/10.1534/genetics.116.191379.
[21] Ho C-Y, Lee J-I, Huang S-P, Chen S-C, Geng J-H. A Genome-Wide Association Study of Metabolic Syndrome in the Taiwanese Population. Nutrients 2023;16:77. https://doi.org/10.3390/nu16010077.
[22] Li Y, Xue F, Li B, Yang Y, Fan Z, Shu J, et al. Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform 2023. https://doi.org/10.1101/2023.04.28.538585.
[23] Zhang W, Najafabadi H, Li Y. SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations. PLoS Genet 2023;19:e1011104. https://doi.org/10.1371/journal.pgen.1011104.
[24] Kyratzi P, Gadsby S, Knowles E, Harris P, Menzies-Gow N, Elliott J, et al. Genomic Informational Field Theory (GIFT) to map complex traits in small sample sizes 2025. https://doi.org/10.1101/2025.08.15.670531.
[25] Puspasari A, Herlambang H, Maharani C, Perkasa TAB, Enis RN, Tarawifa S, et al. The Genetic Variation of Ace Gene Rs4343 Has Lack Association With Pre-Eclampsia: Case-Control Study In Jambi Malay Population. Jambi Medical Journal: Jurnal Kedokteran Dan Kesehatan 2025;13:60–6.
[26] Ekaputri TW, Enis RN, Tarawifa S, Harahap H, Syauqy A, Perkasa TAB. Optimizing Maternal and Child Health: Enhancing Public Awareness of TORCH Infections During Pregnancy. Medical Dedication (MEDIC) 2025;8:20–5.
[27] Ayudia EI, Calista AA, Enis RN, Perkasa TAB, Anggaraini B, Asyhar R. A Comparison Between The 5:2 And 16:8 Intermittent Fasting Methods on Weight Loss in Overweight And Obese Individuals. Jambi Medical Journal: Jurnal Kedokteran Dan Kesehatan 2025;13:91–7.
[28] Ayudia EI, Amatullah A, Perkasa TAB, Asty ZF, Wijayanti Z. Strategi Inovatif Peningkatan Kesadaran Tentang Diabetes Melitus: Mengurangi Risiko Melalui Edukasi dan Screening di Masyarakat. Medical Dedication (MEDIC) 2024;7:92–8.
[29] Akande OW, Afrough B, Amante M, Carter L, Cunningham J, Hull NC, et al. Investing in health preparedness, response and resilience: a genomics costing tool focused on next generation sequencing. Front Public Health 2024;12. https://doi.org/10.3389/fpubh.2024.1404243.
[30] Gwinn M, MacCannell DR, Khabbaz RF. Integrating Advanced Molecular Technologies into Public Health. J Clin Microbiol 2017;55:703–14. https://doi.org/10.1128/JCM.01967-16.
[31] Obi QN, Menkir A, Babalola DF, Gedil M. Development of Efficient Genotyping Workflow for Accelerating Maize Improvement in Developing Countries 2020. https://doi.org/10.21203/rs.3.rs-129326/v1.
[32] Heidar MM, Khatami M. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP. Iran J Biotechnol 2017;15:208–12. https://doi.org/10.15171/ijb.1307.
[33] Jalessi M, Gholami MS, Razmara E, Hassanzadeh S, Sadeghipour A, Jahanbakhshi A, et al. Association between TBXT rs2305089 polymorphism and chordoma in Iranian patients identified by a developed T‐ARMS‐PCR assay. J Clin Lab Anal 2022;36. https://doi.org/10.1002/jcla.24150.
[34] Perkasa TAB, Hastuti P, Sadewa AH. Polimorfisme Gen Adenosine Triphosphate-Binding Cassette Subfamily-A Member-1 rs2230806 Sebagai Faktor Risiko Terjadinya Dislipidemia Pada Etnis Bugis Di Sulawesi Tengah. Universitas Gadjah Mada, 2023.
[35] Yari D, Ehsanbakhsh Z, Validad M-H, Hasanian Langroudi F. Association of TIMP-1 and COL4A4 Gene Polymorphisms with Keratoconus in an Iranian Population. J Ophthalmic Vis Res 2020;15:299–307. https://doi.org/10.18502/jovr.v15i3.7448.
[36] Norazzman NI, Assyuhada MGS, Daud N, Mazuki N, Musa N, Hassan S, et al. Ancestry Single Nucleotide Polymorphisms in Malayo-Polynesian Sub-Groups in the Malay Population: A Preliminary Study. Jordan Med J 2023;57. https://doi.org/10.35516/jmj.v57i4.2064.
[37] Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, et al. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosoma curassoni, S. bovis, S. haematobium and their hybrids. Parasit Vectors 2023;16:121. https://doi.org/10.1186/s13071-023-05754-9.
[38] Zabala AS, Gomez MEV, Alvarez MF, Siewert S. Tetra Primer ARMS PCR Optimization to Detect Single Nucleotide Polymorphism of the KLF14 Gene. OAlib 2017;04:1–14. https://doi.org/10.4236/oalib.1104145.
[39] Guo J, Grojean J, Guo H. ARMSprimer3: An open-source primer design Python program for amplification refractory mutation system PCR (ARMS-PCR). J Pathol Inform 2025;17:100442. https://doi.org/10.1016/j.jpi.2025.100442.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tengku Arief Buana Perkasa, Afifah Amatullah, Denok Tri Hardiningsih, Annissa Delfira, Anggelia Puspasari, Citra Maharani, Nadir Putra Indra Tarigan, Widya Lawra Arrahma, Syahreza Hadi Juanda, Tengku Irfan Wira Buana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Published with license by LPPM Universitas Jambi. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0 International). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator.







