Rancang Bangun Pengendalian Robot Mobil dengan Wireless Joystick PS2 Menggunakan Modul nRF24L01

Arif Rahman Hakim¹, Nehru², dan Samratul Fuady³

¹Program Studi Teknik Elektro, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia

Email: arifx02@gmail.com, nehruanja@gmail.com, sfuady@unja.ac.id

Info Artikel
Diterima: 25 Juli 2021
Disetujui: 16 Agustus 2021
Dipublikasikan: 31 Agustus 2021

Alamat Korespondensi:
arifx02@gmail.com

Copyright © 2021 Jurnal Engineering

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

Abstrak
Robot adalah sebuah alat mekanik yang dapat melakukan tugas fisik baik menggunakan pengawasan dan kontrol manusia, atau program yang sudah tertanam dalam sebuah processor. Dalam suatu pengendalian sistem robot manual, sebagai bentuk komunikasi atau interaksi manusia dengan robot, maka perlu alat yang digunakan untuk komunikasi antara manusia dengan robot, salah satunya adalah telekomunikasi nirkabel. Modul nRF24L01 adalah transceiver chip tunggal yang khusus di desain untuk menyediakan pengaplikasian komunikasi wireless dengan daya yang sangat rendah. Penelitian ini menggunakan dua buah modul nRF24L01 dan dua buah mikrokontroler sebagai media komunikasi. Satu modul nRF24L01 berfungsi sebagai transmitter dan satu modul nRF24L01 sebagai receiver. Robot yang dibuat dapat dikendalikan melalui analog joystick PS2 yang terdapat pada bagian transmitter. Berdasarkan penelitian yang sudah dilakukan dapat diambil kesimpulan bahwa robot yang dibuat dapat dikendalikan menggunakan kontroler dengan jarak maksimal 300 meter.

Kata kunci: Robot, nRF24L01, Joystick Analog

1. Pendahuluan

Penelitian ini bertujuan untuk merancang bangun sebuah robot yang mampu dikendalikan dengan menggunakan kontroler wireless. Digunakan dua buah mikrokontroler yang saling berkomunikasi secara wireless agar alat ini dapat bekerja. Sebuah mikrokontroler berada di dalam robot yang terhubung ke receiver, dan satunya lagi berada di dalam joystick yang terhubung ke transmitter.

2. Metode Penelitian

Bagian ini menjelaskan tahapan perancangan yang dilakukan oleh peneliti selama melakukan penelitian ini. Gambar 1 menunjukkan blok diagram keseluruhan sistem yang dibangun. Bagian input yang dikendalikan oleh mikrokontroler Arduino Nano (Tx) meliputi sensor analog yang terdapat pada joystick PS2/PC. Inputan data yang diambil dari nilai analog joystick ini diteruskan oleh mikrokontroler Arduino Nano (Tx) ke modul wireless (modul nRF24L01) untuk dikirimkan kepada modul wireless (modul nRF24L01) yang berada pada model robot mobil untuk kemudian diterima oleh mikrokontroler Arduino Uno (Rx) untuk mendapatkan output yang berupa pergerakan motor DC. Bagian output yang dikendalikan oleh Arduino Uno (Rx) meliputi kecepatan perputaran dari motor DC berdasarkan besarnya nilai analog yang telah diterima dari mikrokontroler yang berada pada joystick.

![Gambar 1. Blok Diagram Instrumen](image)

2.1 Perancangan Hardware

Perancangan perangkat keras terdiri dari dua bagian, bagian pertama adalah pembuatan perancangan bagian model dari robot mobil, dan bagian kedua adalah pembuatan perancangan bagian kontroler joystick.

Pada bagian model robot mobil (Gambar 2 dan 3) terdapat Arduino Uno sebagai otak dari robot, Driver motor sebagai pengatur PWM dari arduino ke motor DC, modul nRF24L01 sebagai penerima (Receiver) sinyal dari kontroler, dan Motor DC sebagai penggerak Robot Mobil. Sedangkan pada bagian kontroler joystick terdapat Arduino Nano, Modul nRF24L01 sebagai Pengirim (Transmitter) sinyal, dan sensor dari analog joystick sebagai masukan data untuk menggerakkan robot mobil (Gambar 4).
2.2 Perancangan Elektrik

Dalam penelitian ini penulis memisahkan perancangan elektrik menjadi dua bagian yaitu pada bagian pengirim dan bagian penerima. Bagian pengirim dapat dilihat pada gambar 5, dan hubungan antara masing-masing komponen yang terdapat pada bagian pengirim dapat dilihat pada tabel 1 dan tabel 2.
Tabel 1. Hubungan antara Arduino Nano dan modul Wireless nRF24L01

<table>
<thead>
<tr>
<th>Arduino Nano</th>
<th>Modul nRF24L01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 3.3 V</td>
<td>VCC</td>
</tr>
<tr>
<td>Pin GND</td>
<td>GND</td>
</tr>
<tr>
<td>Pin 9</td>
<td>CE</td>
</tr>
<tr>
<td>Pin 10</td>
<td>CSN</td>
</tr>
<tr>
<td>Pin 13</td>
<td>SCK</td>
</tr>
<tr>
<td>Pin 11</td>
<td>MOSI</td>
</tr>
<tr>
<td>Pin 12</td>
<td>MISO</td>
</tr>
</tbody>
</table>

Tabel 2. Hubungan antara Arduino nano dan Joystick PS2

<table>
<thead>
<tr>
<th>Arduino Nano</th>
<th>Joystick PS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 5v</td>
<td>VCC</td>
</tr>
<tr>
<td>Pin GND</td>
<td>GND</td>
</tr>
<tr>
<td>Pin A0</td>
<td>Y Axis</td>
</tr>
<tr>
<td>Pin A1</td>
<td>X Axis</td>
</tr>
</tbody>
</table>

Bagian penerima dapat dilihat pada gambar 6, hubungan antara masing-masing komponen yang terdapat pada bagian pengirim dapat dilihat pada tabel 3. dan tabel 4.

Gambar 6. Rangkain Receiver (Penerima)
<table>
<thead>
<tr>
<th>Arduino Uno</th>
<th>Modul nRF24L01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 3.3 V</td>
<td>VCC</td>
</tr>
<tr>
<td>Pin GND</td>
<td>GND</td>
</tr>
<tr>
<td>Pin 9</td>
<td>CE</td>
</tr>
<tr>
<td>Pin 10</td>
<td>CSN</td>
</tr>
<tr>
<td>Pin 13</td>
<td>SCK</td>
</tr>
<tr>
<td>Pin 11</td>
<td>MOSI</td>
</tr>
<tr>
<td>Pin 12</td>
<td>MISO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arduino Uno</th>
<th>L298N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>VCC</td>
</tr>
<tr>
<td>Pin GND</td>
<td>GND</td>
</tr>
<tr>
<td>Pin 2</td>
<td>In 1</td>
</tr>
<tr>
<td>Pin 3</td>
<td>In 2</td>
</tr>
<tr>
<td>Pin 4</td>
<td>In 3</td>
</tr>
<tr>
<td>Pin 5</td>
<td>In 4</td>
</tr>
</tbody>
</table>

2.3 Perancangan Software

Perancangan software ini dibagi menjadi dua bagian yaitu software pada kontroler atau pada bagian pengirim dan software pada robot atau pada bagian penerima seperti terlihat pada gambar 7.

![Diagram 1](image.png)

Gambar 1. Prinsip Kerja Sistem bagian pengirim dan penerima
2.4 Implementasi Sistem

![Gambar 7. Rangkaian Penggerak Model Robot Mobil](image)

Keterangan Gambar:
1. LCD (Liquid Crystal Display).
2. SDA dan SCL dari LCD.
3. Modul nRF24L01.
4. Pin CE, CSN, SCK, MOSI, MISO modul nRF24L01 ke Arduino Uno.
5. Pin Input Sensor Proximity IR ke Arduino Uno.
6. Arduino Uno.
7. Roda Mobil terpasang ke Motor DC.
8. Pin Output Motor DC.
9. Sensor Proximity IR.

Pada penggerak model robot mobil dibuat rangkaian yang terhubung pada arduino uno, modul nRF24L01, motor driver L298N, motor dc, dan baterai 18650 7.4V. Tegangan 7.4V dari baterai akan menjadi tegangan masukan dari motor driver L298N kemudian akan diubah menjadi tegangan 5V oleh IC Regulator LM7805 yang akan menjadi inputan dari Arduino Uno.

3. Hasil Dan Pembahasan

Hasil dan pembahasan meliputi data hasil pengujian nilai keluaran analog terhadap kecepatan motor dc dan data hasil pengujian jarak komunikasi antar mikrokontroler.

3.1. Pengujian Pengendalian Joystick

Untuk menentukan apakah robot dapat dikendalikan dengan menggunakan kontroler joystick dapat dilakukan dengan membandingkan antara arah gerak analog yang terdapat pada kontroler joystick dengan pergerakan robot. Tabel 5 merupakan hasil pembandingan antara arah gerak analog joystick dan arah gerak robot.
Tabel 5. Hasil Pengujian arah gerak analog joystick terhadap pergerakan robot.

<table>
<thead>
<tr>
<th>No.</th>
<th>Arah Analog</th>
<th>PWM Kiri</th>
<th>PWM Kanan</th>
<th>Motor Kiri (rpm)</th>
<th>Motor Kanan (rpm)</th>
<th>Arah Gerak Robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tengah</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Tidak Bergerak</td>
</tr>
<tr>
<td>2.</td>
<td>Atas</td>
<td>255</td>
<td>255</td>
<td>300</td>
<td>300</td>
<td>Maju</td>
</tr>
<tr>
<td>3.</td>
<td>Kanan Atas</td>
<td>255</td>
<td>125</td>
<td>300</td>
<td>147</td>
<td>Maju Kekanan Serta Perlahan</td>
</tr>
<tr>
<td>4.</td>
<td>Kanan</td>
<td>255</td>
<td>0</td>
<td>300</td>
<td>0</td>
<td>Berbelok Kekanan</td>
</tr>
<tr>
<td>5.</td>
<td>Kanan Bawah</td>
<td>255</td>
<td>125</td>
<td>300</td>
<td>147</td>
<td>Mundur Kekanan Serta Perlahan</td>
</tr>
<tr>
<td>6.</td>
<td>Bawah</td>
<td>255</td>
<td>255</td>
<td>300</td>
<td>300</td>
<td>Mundur</td>
</tr>
<tr>
<td>7.</td>
<td>Kiri Bawah</td>
<td>125</td>
<td>255</td>
<td>147</td>
<td>300</td>
<td>Mundur Kekiri Serta Perlahan</td>
</tr>
<tr>
<td>8.</td>
<td>Kiri</td>
<td>0</td>
<td>255</td>
<td>0</td>
<td>300</td>
<td>Berbelok Kearah Kiri</td>
</tr>
<tr>
<td>9.</td>
<td>Kiri Atas</td>
<td>125</td>
<td>255</td>
<td>147</td>
<td>300</td>
<td>Maju kekiri secara perlahan</td>
</tr>
</tbody>
</table>

Berdasarkan hasil analisa data kecepatan motor DC yang didapatkan oleh peneliti dalam pengujian ini, dapat diambil kesimpulan bahwa arah pergerakkan robot dapat menyesuaikan dengan arah pergerakan dari analog joystick yang terdapat di kontrooler. Arah pergerakan robot diatur dengan adanya perbedaan kecepatan putar dari motor DC kiri dan motor DC kanan. Ketika robot akan berbelok kekiri maka kecepatan putar motor kiri akan lebih pelan daripada kecepatan putar motor dc kanan, sebaliknya apabila robot akan berbelok kearah kanan maka kecepatan putar motor DC kanan lebih pelan daripada kecepatan putar dari motor DC kiri, dan ketika robot akan bergerak maju maupun mundur maka kecepatan putar dari motor DC kiri dan motor DC kanan adalah sama besar.

3.2. Pengujian Jarak Komunikasi

Untuk menentukan berapa jarak antara kontroler dengan robot untuk mengontrol robot dapat dilakukan dengan mengukur jauh dari kedua peralatan tersebut yang berlaku sebagai transmitter dan receiver. Pengujian dilakukan dengan menambah jarak antara model robot mobil dengan kontroler joystick dari jarak 10 meter hingga jarak dimana mikrokontroler sudah tidak dapat berkomunikasi lagi (terputus). Dapat dilihat pada tabel 6 hasil pengujian jarak antara kontroler dengan alat yang diubah.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jarak (M)</th>
<th>Delay (mS)</th>
<th>Kondisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>Terhubung</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0</td>
<td>Terhubung</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>10</td>
<td>Terhubung</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>20</td>
<td>Terhubung</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>Terhubung</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>Terhubung</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>300</td>
<td>Terhubung</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>700</td>
<td>Terhubung</td>
</tr>
<tr>
<td>9</td>
<td>250</td>
<td>900</td>
<td>Terhubung</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>1000</td>
<td>Terhubung</td>
</tr>
</tbody>
</table>
Dari pengujian jarak komunikasi antara robot dan kontroler dapat diambil kesimpulan yaitu, semakin jauh jarak antara robot dan kontroler maka akan semakin besar pula delay yang tercipta. Selain itu, berdasarkan datasheet dari modul nRF24L01, ketika dipilih kecepatan pengiriman data 2MBPS jarak maksimal yang mampu dicapai adalah 520 meter. Sedangkan pada penelitian ini dengan kecepatan pengiriman 2MBPS hanya mampu berkomunikasi pada jarak 300 meter, hal ini disebabkan oleh pada saat peneliti menuliskan program untuk bagian receiver (penerima) penulis menentukan adalah waktu maksimum yang penerimaan data yang ada pada bagian receiver adalah 1000 milisecond. Oleh karena itu pada penelitian ini jarak maksimum komunikasi antara robot dan kontroler adalah 300 meter karena pada saat jarak tersebut delay yang tercipta adalah sebesar 1000 milisecond.

4. Kesimpulan

Berdasarkan penelitian yang sudah dilakukan dapat diambil kesimpulan bahwa Dengan menggunakan modul komunikasi wireless nRF24L01 dapat digunakan untuk mengendalikan sebuah robot mobil menggunakan kontroler wireless dengan jarak 300 meter.

Daftar Pustaka