ESTIMATOR AND APPLIED MIXED KERNEL AND FOURIER SERIES MODELLING IN NONPARAMETRIC REGRESSION

Authors

  • I Wayan Sudiarsa Universitas PGRI Mahadewa Indonesia
  • Ni Putu Ayu Mirah Mariati Universitas Mahasaraswati Denpasar https://orcid.org/0000-0002-0492-488X
  • Ni Made Sukma Sanjiwani Universitas Mahasaraswati Denpasar

DOI:

https://doi.org/10.22437/jiituj.v8i2.36246

Keywords:

Nonparametric Regression, Modeling, kernel, Fourier Series

Abstract

There are three nonparametric regression approaches, namely parametric, nonparametric, and semiparametric regression. Nonparametric regression allows the response variable to follow a different curve from one predictor variable to another. In paired data, the components of the predictor variables and response variables are assumed to follow unknown data patterns, so they can be approached with kernel-based regression models and Fourier series. The basic components are approached with kernel functions and Fourier series functions. Errors are assumed to be normally distributed with zero mean and constant variance. The originality of this research is to obtain a mixed kernel and Fourier series model estimator and then apply it to poverty data in Bali Province. The research stage method begins with a nonparametric regression model estimator based on kernel and Fourier series. The next step is to research the regression curve estimation and obtain lemmas and theorems. The results of the function estimation are highly dependent on the bandwidth, smoothing, and oscillation parameters. In the application to the case of real data, the resulting model gives an R2 value of 0.6278, meaning that the variables used can explain the model by 62.78 percent. From the modeling results obtained, the Open Unemployment Rate has a positive effect on the percentage of poor people in Bali.

Downloads

Download data is not yet available.

References

Ahmad, H. B., Asaad, R. R., Almufti, S. M., Hani, A. A., Sallow, A. B., Zeebaree, S. R. M. (2024). Smart Home Energy Saving With Big Data And Machine Learning. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 11-20. https://doi.org/10.22437/jiituj.v8i1.32598.

Abdulrahman, S. M., Hani, A. A., Zeebaree, S. R., Asaad, R. R., Majeed, D. A., Sallow, A. B., & Ahmad, H. B. (2024). Intelligent home iot devices: an exploration of machine learning-based networked traffic investigation. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 1-10. https://doi.org/10.22437/jiituj.v8i1.32767.

Afifah, N., Budiantara, I.N., and Latra, I.N. (2017), "Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression", Journal of Physics: Conference Series, 855(1). https://doi.org/10.1088/1742-6596/855/1/012002.

Berlinet, A.; Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics; Kluwer Academic: Norwell, MA, USA. https://scholar.archive.org/work/lcildyh235gevmzhvq4gyx7ubq/access/wayback/http://tocs.ulb.tu-darmstadt.de/118341111.pdf .

BPS. Penghitungan dan Analisis Kemiskinan Makro Indonesia Tahun 2012. (2012). Jakarta. https://media.neliti.com/media/publications/49346-ID-penghitungan-dan-analisis-kemiskinan-makro-indonesia-tahun-2012.pdf .

Cadiz, M. C. D., Manuel, L. A. F., Reyes, M. M., Natividad, L. R., & Ibarra, F. P. (2024). Technology integration in Philippine higher education: A content-based bibliometric analysis. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(1), 35-47. https://doi.org/10.22437/jiituj.v8i1.31807.

Cheng, M.-Y.; Huang, T.; Liu, P.; Peng, H. (2018). Bias reduction for nonparametric and semiparametric regression models. Stat. Sin. 28, 2749–2770. https://doi.org/10.5705/ss.202017.0058.

Cheruiyot, L.R. (2020). Local linear regression estimator on the boundary correction in nonparametric regression estimation. J. Stat. Theory Appl. 19, 460–471. https://doi.org/10.2991/jsta.d.201016.001.

Choerunnisa, R. A., Dewi, R. R., Bariklana, M., & Widodo, E. (2021). Analisis faktor yang mempengaruhi tingkat produksi jahe di indonesia menggunakan metode regresi linier berganda. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 5(2), 231-242. https://doi.org/10.22437/jiituj.v5i2.15958.

Dessi, L. C., & Shah, M. (2023). Application of the numbered head together type cooperative learning model to improve student learning outcomes in mathematics subjects. Interval: Indonesian Journal of Mathematical Education, 1(2), 67-72. https://doi.org/10.37251/ijome.v1i2.773.

Eubank, R.L. (1999). Nonparametric Regression and Spline Smoothing, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA.

Funke, B. (2024). On Uniform Consistency of Nonparametric Estimators Smoothed by the Gamma Kernel.

Ge, C., & Braun, W. J. (2024). Quick and Simple Kernel Differential Equation Regression Estimators for Data with Sparse Design.

Helida, Y., Ching, C. P., & Oyewo, A. (2023). Development of a simple stirling engine demonstration tool on the subject of thermodynamics. Journal of Educational Technology and Learning Creativity, 1(2), 59-67. https://doi.org/10.37251/jetlc.v1i2.790.

Hidayat, R., Budiantara, I. N., Otok, B. W., & Ratnasari, V. (2020). The regression curve estimation by using mixed smoothing spline and kernel (MsS-K) model. Communications in Statistics - Theory and Methods, 1–12. https://doi.org/10.1080/03610926.2019.1710201.

Ismail, Y., Mir, S.A., and Nazir, N. (2018), Utilization of Parametric and Nonparametric Regression Models for Production, Productivity and Area Trends of Apple (Malus domestica) in Jammu and Kashmir, India, International Journal of Current Microbiology and Applied Sciences. 7(04), 267–276.

Kalluci, E. (2024). Modeling inflation dynamics using the logistic model: insights. 8(1), 364–378.

Kohn, R., Ansley, C.F., and Tharm, D., (2014), The Performance of Cross Validation and Maximum Likelihood Estimator of Spline Smooting Parameter. Journal of The American Statistics Assosiations, 86(416), 1042–1050.

Kusuma, R. S. (2020). Improving students’ basic asking skills by using the discovery learning model. Tekno - Pedagogi : Jurnal Teknologi Pendidikan, 10(2), 8-13. https://doi.org/10.22437/teknopedagogi.v10i2.32743.

Linke, Y., Borisov, I., Ruzankin, P., Kutsenko, V., Yarovaya, E., & Shalnova, S. (2024). Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency. 1–23.

Liu, X., and Preve, D. (2016). Measure of location-based estimators in simple linear regression. Journal of Statistical Computation and Simulation, 86(9), 1771–1784. https://doi.org/10.1080/00949655.2015.1082131.

Lu, M.., Liu, Y., Li, C.-S. (2020). Efficient estimation of a linear transformation model for current status data via penalized splines. Stat. Meth. Medic. Res. 29, 3–14. https://doi.org/10.1177/0962280218820406.

Mariati, M.P.A.M., Budiantara, I.N., Ratnasari, V. (2021). The application of mixed smoothing spline and Fourier series model in nonparametric regression. Symmetry. 13, 2094. https://doi.org/10.3390/sym13112094.

Mozumder, S. U., Rutherford, M., & Lambert, P. (2017). Direct likelihood inference on the cause-specific cumulative incidence function: A flexible parametric regression modelling approach. Statistics in Medicine. 37, 1–16. https://doi.org/10.1002/sim.7498.

Nurcahayani, H., Budiantara, I. N., Zain, I. (2021). The Curve Estimation of Combined Truncated Spline and Fourier Series Estimators for Multiresponse Nonparametric Regression. Mathematics, 9(10), 1141; https://doi.org/10.3390/math9101141 .

Osmani, F., Hajizadeh, E., & Mansouri, P. (2019). Kernel and regression spline smoothing techniques to estimate coefficient in rates model and its application in psoriasis. Medical Journal of the Islamic Republic of Iran, 33, 90. https://doi.org/10.47176/mjiri.33.90 .

Respati, S., Isram, M., & Kusrini, S. (2022). Estimation of Queue Length at Signalized Intersections Using Artificial Neural Network. 6, 201–213.

Storlie, C. B., Lane, W. A., Ryan, E. M., Gattiker, J. R., and Higdon, D. M. (2015). Calibration of Computational Models with Categorical Parameters and Correlated Outputs via Bayesian Smoothing Spline ANOVA. Journal of the American Statistical Association, 110 (509), 68–82. http://doi.org/10.1080/01621459.2014.979993.

Sudiarsa, I W., Budiantara, I. N., Suhartono; Pumami, S. W. (2015). Combined Estimator Fourier Series and Spline Truncated in Multivariabel Nonparametrik Regression. Applied Mathematical Science. 9(100), 4997-5010. http://dx.doi.org/10.12988/ams.2015.55394 .

Suwarni, R. (2021). Analysis the process of observing class iv students in thematic learning in primary schools. Tekno - Pedagogi : Jurnal Teknologi Pendidikan, 11(1), 26-32. https://doi.org/10.22437/teknopedagogi.v11i1.32717.

Yilmaz, E., Ahmed, S.E., Aydin, D. (2020) A-Spline regression for fitting a nonparametric regression function with censored data. Stats. 3, 11. https://doi.org/10.3390/stats3020011 .

Wang, Y., & Ke, C. (2009). Smoothing Spline Semiparametric Nonlinear Regression Models. 18(1), 165–183. https://doi.org/10.1198/jcgs.2009.0010.

Yu, X., Lin, J., Jiang, F., Du, J., & Han, J. (2018). A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression. Computational Intelligence and Neuroscience, 2018, hal.1–12.

Yohanie, D. D., Botchway, G. A., Nkhwalume, A. A., & Arrazaki, M. (2023). Thinking process of mathematics education students in problem solving proof. Interval: Indonesian Journal of Mathematical Education, 1(1), 24-29. https://doi.org/10.37251/ijome.v1i1.611.

Zakiyah, Z., Boonma, K., & Collado, R. (2024). Physics learning innovation: Song and animation-based media as a learning solution for mirrors and lenses for junior high school students. Journal of Educational Technology and Learning Creativity, 2(2), 54-62. https://doi.org/10.37251/jetlc.v2i2.1062.

Zeng, X., Xia, Y. (2019). Asymptotic distribution for regression in a symmetric periodic Gaussian kernel Hilbert space. Stat. Sin. 29, 1007–1024. https://doi.org/10.5705/ss.202016.0440.

Downloads

Published

2024-11-09

How to Cite

Sudiarsa, I. W., Mariati, N. P. A. M., & Sanjiwani, N. M. S. (2024). ESTIMATOR AND APPLIED MIXED KERNEL AND FOURIER SERIES MODELLING IN NONPARAMETRIC REGRESSION. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 8(2), 622-633. https://doi.org/10.22437/jiituj.v8i2.36246