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Abstract 

In speed control systems of induction motor electrical drives, real time 

speed monitoring is necessary. For speed monitoring, it can be used the 

direct method, which uses a mechanical sensor mounted on the motor 

shaft, or the indirect method, which is based in estimation, mainly from 

the dynamic model of the motor. Speed estimation based on the 

dynamic model of the motor in orthogonal coordinates is the most 

widespread method in sensorless speed control systems of three phase 

squirrel cage induction motor electrical drives, especially those of high 

accuracy. In this paper, the open loop speed estimator is presented, 

which is used for speed estimation in three phase induction motors. The 

proposed speed estimators are based on orthogonal coordinate’s 

dynamic model of an induction motor in a stator reference frame. This 

technical solution is simple and has a low cost. The currents and 

voltages of the two motor phases are the input variables of the 

estimator, while the output variable is the induction motor speed. The 

speed estimator model is built in LabVIEW software. The dynamics 

and accuracy of the estimator proposed in this paper have been tested 

experimentally. The speed measured by the industrial incremetal 

encoder is compared with that of a speed estimator modeled in 

LabVIEW software. The obtained experimental results show a good 

match between the measured and estimated speeds under the step 

torque load changes of the induction motor. 
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INTRODUCTION 

Nowadays, most electrical drives applied in industry use three-phase squirrel cage induction 

motors. This is due to the advantages that this motor has compared to other motors. The most important 

advantages are low price, robust operation, and low maintenance cost (Pjetri et al., 2015; Kusuma, 

2020; Suwarni, 2021; Che et al., 2023; Puka et al., 2024; Hysa et al., 2021; Minh et al., 2023). In 

electrical drives, in which speed control is applied, it is clear that their operation necessarily requires 

real time monitoring of the motor speed. Motor speed can be monitored in real time using the direct or 

indirect method. The direct method consists in the direct measurement of the speed by using mechanical 
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sensors, which are mounted on the motor shaft. The direct method is also known as the traditional 

method and uses tachogenerators, encoders, or resolvers. It is clear that the use of the direct method for 

monitoring the real-time motor speed increases the cost of the electrical drive and, on the other hand, 

reduces the reliability of its operation due to eventual defects that these sensors may exhibit during their 

operation. Therefore, scientific researchers of electrical drives in which speed control is required have 

focused their speed monitoring research on indirect methods (Kumar De et al., 2019; Thanh et al., 2017; 

Junwen, 2023; Fang et al., 2022; Vu et al., 2023; Khosal et al., 2023; Krishna Srinivasan, et al., 2020; 

Zhang et al., 2024; Dias et al., 2024). 

The indirect method is based on speed estimation, mainly through two techniques: rotor slot 

harmonics and the technique based on the dynamic model of the three-phase squirrel cage induction 

motor in orthogonal coordinates. Estimating the motor speed through the rotor slot harmonics technique 

is difficult in the case when the motor is fed by the frequency converter because of other harmonics that 

are present due to the inverter (Al-Ameri et al., 2023; Skowron et al., 2020; Souza et al., 2021; Vu et al., 

2022; Yohanie et al., 2023; Pjetri et al., 2024; Koka et al., 2024; Zakiyah, Boonma, & Collado, 2024). 

Due to the easy implementation, in this paper, the technique of speed estimation in open loop based on 

the dynamic model of the induction motor in orthogonal coordinates is presented (Kumar De et al., 

2019; Thanh et al., 2017; Junwen, 2023; Fang et al., 2022; Tian et al., 2021; Stoicuta, 2021). 

The speed estimator proposed in this paper has low cost, it is robust, reliable, and therefore it is 

suitable for use in three phase squirrel cage induction motor electrical drives in which speed control is 

performed. The parameters of the motor dynamic model are easily determined from the no load and 

short circuit experiments. The drawback of the proposed estimator is its dependence on changing motor 

parameters (Pjetri et al., 2015; Tian et al., 2021; Stoicuta, 2021). However, in the normal operating 

regimes of the induction motor, these parameters practically do not change. As input variables of the 

estimator are two currents and voltages for two phases of the motor, while speed is the output variable. 

LabVIEW is the software in which is built the estimator model presented in this paper. 

RESEARCH METHOD 

The induction motor speed estimator proposed in this paper is based on the dynamic model of 

the motor. For three-phase squirrel cage induction motors, the dynamic model in stator reference frame 

orthogonal coordinates (D, Q) is shown in equation (1). The dynamic model in the orthogonal 

coordinate system (D, Q) is more suitable for speed estimation since both stator currents and voltages of 

the motor are measured through sensors in the stator reference frame (Pjetri et al., 2015; Kumar De et 

al., 2019; Thanh et al., 2017). 
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Where 

• sDu , sQu
  stator orthogonal component voltages. 

• sDi , sQi
, rDi , rQi

 stator and rotor orthogonal component currents. 

• sD , sQ
, rD , rQ

 stator and rotor orthogonal component fluxes. 

•   and T electrical rotor speed and electromagnetic torque of an induction motor. 

• sR , rR , mL , sL , rL  resistance and inductance of the stator and rotor of an induction 

motor. 

 

The dynamic model of a three-phase induction motor given in equation (1) is suitable for 

sensorlees speed estimation (Pjetri et al., 2015). Since in the dynamic model of the motor are present 
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rotor currents, which cannot be monitored for squirrel cage induction motors, we will eliminate them 

from the dynamic model by performing some simple mathematical transformations. From equation (1), 

we extract the orthogonal components of the stator flux. The dynamic model of three-phase induction 

motor given in equation (1) is suitable for sensorlees speed estimation (Pjetri et al., 2015). 

1
( )

1
( )

sD sD s sD

sQ sQ s sQ

u R i
s

u R i
s

 = −

 = −
     (2) 

Then we express the orthogonal components of the rotor current as a function of the orthogonal 

components of the stator fluxes, specifically: 
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If we substitute the components of the stator flux (2) in the components of the rotor currents (3), 

we have: 
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Substituting the orthogonal components of the rotor currents (4) into the orthogonal 

components of the rotor fluxes (1) would give us: 
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Where 
2(1 ( / ))m r sL L L = −

 it is distribution coefficient. As it can be seen from equation (5), 

the orthogonal components of the rotor fluxes can be estimated if we measure the stator voltages and 

currents of the induction motor. If the parameters of the motor dynamic model are known, as well as by 

measuring the stator voltages and currents of the motor, then we are able to estimate in real time the 

rotational speed of the motor, as will be shown below. 

The angular position of the rotor flux vector can be calculated using the following expression: 

1tan
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The time derivative of the equation (6) gives us: 
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From the motor dynamic model of equation (1), we can express the derivatives of the 

orthogonal components of the rotor fluxes as follows: 
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    (8) 

By substituting the orthogonal components of the rotor currents of equation (1) in equation (8), 

we have: 
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Where Tr =Lr / Rr is the time constant of the rotor. If we substitute equation (9) in equation (7), 

we have: 

2 2
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By substituting equation (7) in equation (10) gives us equation (11), through which we can 

estimate in real time the electrical rotor speed of the three-phase squirrel cage induction motor. As can 

be seen from equation (11), if the parameters of the dynamic model of the motor are known, and by 

measuring the stator voltages and currents, we can estimate the orthogonal components of the rotor flux 

(5), and then it can be estimated in real time the motor speed (Pjetri et al., 2015). 
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Based on the presented above equations, we can build the block diagram of the speed estimator, 

which is shown in Figure 1. 
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Figure 1. Block diagram of a three-phase squirrel cage induction motor speed estimator 

 

In the block diagram of Figure 1, we have as input the stator orthogonal components of voltages 

and currents of the motor and as output the electrical rotor speed of the motor. The orthogonal 

components of the stator voltages and currents are obtained by performing the transformation from 

phase coordinates (a, b, c) to orthogonal coordinates (D, Q, 0) by using Clark's transformation matrix 

(Pjetri et al., 2015). 

RESULTS AND DISCUSSION 

Building Induction Motor Speed Estimation Based on LabVIEW 

LabVIEW possesses the capability to seamlessly retrieve data from real-world sources, 

manipulate it within the block diagram, and effortlessly transmit the processed results back into the real 

world (De Asmundis, 2011; Dume et al., 2024; Almufti et al., 2024; Ahmad et al., 2024; Ayub et al 

2023; Indrianto, 2023; Purwaningsih et al., 2023; Hako et al., 2024). We will use this ability to measure 

and also estimate the IM angular speed. For experimental speed measuring of the induction motors, for 
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comparison purposes with the speed estimator proposed in this paper, we have used the NI 6009 USB 

DAQ from National Instruments (National Instrument, 2007). Initially, we configured the DAQmx 

driver for NI 6008/6009 DAQ USB to acquire 5 volt pulses through pin 29 (PFI 0) of this card. The 

incremental encoder Baumer ITD 40A was used for experimental speed measuring. The encoder 

produces 5V pk-pk rectangular pulses when rotated, gives 1024 impulses/revolution, and for the ideal 

no load motor speed of 1500 rpm we have a 25,6 kHz pulse train. The virtual instrument undergoes 

calibration through the utilization of a signal generator instrument. Throughout experimental testing, it 

was observed that the value of 1500 rpm, the best accuracy we achieved with the instrument running in 

Windows Operating System, was 0,5%. (Dume et al., 2024; Dume, 2016; Haryanto et al., 2024). Figure 

2 shows the front panel view of the virtual instrument created in LabVIEW for speed measurement of 

the IM Motor. 

 

 
Figure 2. Front panel of a speed measuring virtual instrument 

 

Induction Motor Speed Estimator Based on LabVIEW 

This section presents the architecture of the IM speed estimator model developed within the 

LabVIEW environment. To achieve this, the prerequisite is the installation of both the LabVIEW base 

package and the Control Design & Simulation module (CDSM). The inclusion of CDSM greatly 

streamlines the model construction process by providing built-in ODE solvers tailored for solving 

Ordinary Differential Equations. While LabVIEW itself functions as a programming language enabling 

model creation independently of CDSM, future incorporation of additional elements into the model 

might prove challenging due to the inherently graphical nature of LabVIEW's code structure (Dume, 

2013). 

First, we need to configure the same NI DAQ 6009 card to acquire voltages and currents for 2 

of three phases of the IM stator windings. The third phase voltage and current can be calculated based 

on Kirchoff’s laws, since the sum of instantaneous voltage phases is 0V and also the sum of 

instantaneous current phases is 0A. In this way, we can use 2 voltage sensors and 2 current sensors. 

Furthermore, we can optimize the NI 6009 DAQ card and use its maximum sampling frequency 48kS/S 

divided into 4 analog inputs each at 12kS/S. Also, since this card has 8 analog inputs, we can configure 

it as 4 channel differential analog inputs, in order to protect the card from any ground loop to the 

sensors conditioning circuit. The custom-build interface module is shown in Figure 3. 
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Figure 3. Three-phase electrical quantities measurement module 

 

Second, we built in LabVIEW the IM speed estimator based on the block diagram of Figure 1. 

The block diagram of the estimator is shown in Figure 4. Figure 5 shows the formula node for the 

transformation of three phase voltages and currents in orthogonal coordinates (D, Q) based on Clark 

matrix transformation [T]. As ODE Solver from the built-in ODE Solvers in LabVIEW, we found that 

the most suitable for the speed estimator is Radau 13 (variable). 

 
Figure 4. Block diagram of the speed estimator in LabVIEW 
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Figure 5. ABC to DQ Clark transformation 

 

Testing and Validating the Induction Motor Speed Estimator 

In order to validate the accuracy of the speed estimator in LabVIEW, we setup a test bed and 

mechanically coupled the IM with a separately excited DC generator. This DC generator is used to 

apply different values of load torque in the motor shaft by connecting different preset values of load 

resistors. Initially, the IM is started with no load, and then approximately after each 5 seconds, we 

changed the load torque applied to its shaft in step form, respectively: 0.5Tr, 0.8Tr, 1Tr and 1.2Tr, where 

Tr is the rated load torque and for this IM motor it is Tr= 9.8 Nm. Figure 6 shows the real-time 

experimental monitoring of the measured and estimated angular speed of the induction motor. In Figure 

7, it is shown the IM speed dynamics during the load torque step change from 50% to 100% of the rated 

load torque applied to the motor shaft.  

 

Figure 6. Front panel of the virtual instrument for speed measurement and estimator comparison (load 

torque is step increased) 
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Figure 7. Comparison of measured and estimated speed under load torque step increase 0.5 p.u. – 1 p.u 

 

Then, we have changed the load torque applied to its shaft in step form, respectively: 1.2Tr, 

0.6Tr, 0.3Tr, and no load. Figure 8 shows the real-time experimental monitoring of the measured and 

estimated angular speed of the motor. In Figure 9, it is shown the IM dynamic during the load torque 

step decrease from 60% to 30% of the rated load torque applied to the motor shaft. 

 

Figure 8. Front panel of the virtual instrument for measurement and estimated speed (load torque is step 

decreased) 
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Figure 9. Comparison of speed measured and estimated under load torque step decrease 0.6 p.u–0.3 p.u 

 

Last, in Table 1, are shown the induction motor parameters used for experiments. In Table 2 are 

shown the steady state values of measured and estimated speed for different values of load torque 

applied to the IM shaft.  

 

Table 1. Parameters of induction motor 

Pr 

[kW] 

nr 

[rpm] 

Ur 

[V] 

fr 

[Hz] 

Rs 

[] 

Rr 

[] 

Ls 

[H] 

Lr 

[H] 

Lm 

[H] 

1.34 1430 400 50 4.2 3.9 0.39365 0.39365 0.375 

 

Table 2. Comparison of steady state values of the speed measured and estimated 

Load torque 

[%] 

Step 

[%] 

Torque load 

change 

Measured speed 

[rpm] 

Estimated speed 

[rpm] 

Speed error 

[%] 

0 0 No change 1496.79 1499.17 0.16 

50 +50 Increase 1467.29 1472.07 0.32 

80 +30 Increase 1445.99 1447.69 0.12 

100 +20 Increase 1430.86 1428.58 -0.16 

120 +20 Increase 1414.78 1409.53 -0.37 

60 -60 Increase 1460.43 1464.62 0.29 

30 -30 Increase 1480.73 1485.36 0.31 

0 -30 Increase 1496.78 1499.17 0.16 

 

The speed results shown in Table 2 were experimentally obtained by increasing the motor load 

torque up to 120% of the rated torque, then decreasing the load torque up to no-load operation. For the 

motor speed measurement, we have used an industrial incremental encoder, type Baumer ITD 40A. The 

results of the estimated and measured speed in steady-state regime are shown in Table 2. The last 

column of Table 2 depicted the steady-state error for each value of the estimated and measured speed. 

Furthermore, the speed estimated results with those measured by the incremental encoder are very close 

to each other (maximum steady state error less than 0.37%), which means the accuracy and robustness 

of the speed estimator proposed in this paper. 

CONCLUSION 

In this paper, we have briefly described the speed estimation of a three-phase squirrel cage 

induction motor, which is based on the dynamic model of the motor in orthogonal coordinates. The 

results have demonstrated the accuracy of the speed estimation method for IM. The proposed speed 
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estimator is suitable also for transient operation regimes. The maximum speed error in steady-state 

operation regimes of the proposed estimator is 0.37%. The proposed estimator is simple and suitable to 

be used in sensorless speed control electrical drives. The currents and voltages of the two motor phases 

are the input variables of the estimator, while the output variable is the induction motor speed. This 

estimator is built in the LabVIEW environment. The obtained results show a good match between the 

measured and estimated speeds under the step torque load changes of the induction motor. The 

drawback of the proposed estimator is its dependence on changing motor parameters; however, in the 

normal operating regimes of the induction motor, these parameters practically do not change. For motor 

torque above the rated load, motor current increases, and as a result, we have a saturation of the 

magnetic circuit, which causes a change of the leakage motor inductances. On the other hand, 

increasing the motor torque above the rated load decreases motor speed, rotor current frequency 

increases, and as a consequence, causes the change of the rotor resistance because of the skin effect. 

Taking into consideration that the accuracy of the speed estimator decreases for motor torque above the 

rated load, this speed estimator is not suitable to be used. 
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