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Abstract 

Parkinson's disease (PD) presents a growing global health challenge, 

with early detection being crucial for effective management and 

treatment. This study seeks to develop an innovative machine learning 

(ML) framework for the early detection of PD by integrating advanced 

techniques for data preprocessing, dimensionality reduction, feature 

selection, and ensemble classification, aiming to significantly improve 

detection accuracy and timeliness. The research employs a robust ML 

pipeline, beginning with data preprocessing using mean imputation, 

standardization, min-max scaling, and SMOTE (Synthetic Minority 

Over-sampling Technique) to handle imbalanced data. Dimensionality 

reduction is achieved through Principal Component Analysis (PCA), 

while feature selection is performed using SelectKBest coupled with 

the ANOVA F-test to identify the most relevant features. Four 

ensemble methods Random Forest, Gradient Boosting, XGBoost, and 

Support Vector Machine (SVM) are evaluated for classification. 

Among the classifiers tested, the Gradient Boosting model stands out 

with an impressive accuracy of 0.9487, demonstrating its superior 

performance in PD detection. Integrating multiple preprocessing, 

dimensionality reduction, and feature selection techniques proves 

essential in optimizing model performance, highlighting the importance 

of a multifaceted approach in handling complex datasets. This research 

introduces a comprehensive ML framework that combines multiple 

advanced techniques in a streamlined process, significantly improving 

the early detection of Parkinson's disease. Ensemble methods, 

combined with strategic feature selection and data balancing 

techniques, offer a novel approach that could be applied to other 

neurodegenerative disorders, expanding its potential impact beyond PD 

detection. 
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INTRODUCTION 

Parkinson's disease (PD), a multifaceted neurodegenerative disorder impacting a substantial 

global population, has encountered a transformative phase owing to recent breakthroughs in medical 

research. Emerging therapeutic avenues have sparked a heightened emphasis on the potential benefits of 

early and precise diagnosis, presenting a compelling impetus for improved patient outcomes (Singh et 

al., 2007; Kusuma, 2020; Suwarni, 2021; Santos, Pallares, & Ventura, 2022). This study endeavors to 

address the critical requirement for accurate and timely diagnosis by conducting a thorough comparative 

analysis of contemporary machine learning classifiers tailored for Parkinson's disease diagnosis. 

Diagnosing Parkinson's disease becomes challenging during the early stages because of the non-specific 

and variable symptoms exhibited by individuals. However, in advanced stages, the diagnosis becomes 

quite straightforward. For instance, whereas tremor is considered the prevailing symptom, it may not be 

observed in certain patients who exhibit distinct symptoms. The challenge encountered in the initial 

phases of Parkinson's disease serves as a strong impetus for the utilization of deep learning methods to 

identify this condition at an early stage and effectively manage its symptoms (Alalayah et al., 2023; 

Sari, Omeiza, & Mwakifuna, 2023; Yohanie et al., 2023). 

Parkinson's disease (PD) is the second most prevalent condition that is identified in older 

individuals, particularly those who are over the age of 60, behind Alzheimer's disease. The prevalence 

of Parkinson's disease (PD) is shown in a recent study conducted by the Parkinson's Foundation. 

According to the Parkinson's Foundation, there are more than 10 million individuals worldwide who are 

affected by Parkinson's disease. Parkinson's disease (PD) has a prevalence of approximately 4% among 

individuals under the age of 50, with the risk of being affected rising as one gets older (Santos, Pallares, 

and Ventura, 2022). Consequently, Parkinson's disease is a cause for concern not only among older 

individuals but also among adults. PD expenditures in the United States are estimated to reach 

approximately $11 billion annually, with direct costs of $6.2 billion included. The majority of expenses 

are incurred at the later stages of product development when manifestations are more prominent than 

ever before (Shafiq et al., 2022). Therefore, from a purely financial perspective, any method that detects 

early signs of PD (i.e., less severe and less intense) would be advantageous in decreasing the expense of 

treatment. A similar assertion can be made regarding the caliber of healthcare. Early detection of the 

disease is crucial to mitigate the significant problems it causes and to maintain a higher quality of life 

for patients in the advanced stages (Gunawardana et al., 2020; Mohammed, Lakhan, & Zebari, 2023; 

Fitriana & Waswa, 2024; Ulandari, Ferry, & Damni, 2024). 

The compelling motivation for early diagnosis is underpinned by recent scholarly investigations 

that underscore the promise of disease-modifying treatments. Novel interventions targeting key factors 

such as alpha-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation have emerged 

as potential game-changers in the PD treatment landscape (Marmion & Kordower, 2018). However, the 

effectiveness of these therapeutic strategies is intrinsically linked to the timely initiation of treatment, 

underscoring the pivotal role of accurate diagnostic methodologies. In the domain of medical 

diagnostics, machine learning has emerged as a potent tool due to its adeptness at deciphering intricate 

data patterns for robust disease prediction (Esteva, 2017). These algorithms, capable of discerning 

subtle and complex relationships within diverse datasets, have garnered attention as invaluable assets in 

medical diagnosis, facilitating early detection and prognosis of a spectrum of diseases (Schrag & Schott, 

2006; Hindocha et al., 2022). 

Exploring machine-learning algorithms that employ feature selection and reduction strategies is 

highly important in many domains such as healthcare, finance, and image identification, among others 

(Chicho et al., 2021; Asrial et al., 2024; Habibi, Jiyane, & Ozsen, 2024; Zakiyah, Boonma, & Collado, 

2024). Feature selection and reduction techniques are designed to discover the most pertinent and 

enlightening information from a provided dataset. This can enhance the effectiveness and 

comprehensibility of machine-learning models. The utilization of these approaches is essential in the 

precise identification of Parkinson's disease (Sanchez-Hernandez et al., 2022). An important benefit of 

feature selection and reduction approaches is their capacity to effectively manage data with a large 

number of dimensions. Real-world datasets frequently consist of numerous features, many of which 

may be redundant or useless. Directly analyzing such datasets might result in computational 

inefficiencies, heightened model complexity, and overfitting. Feature selection techniques aid in 

identifying a subset of features that possess the highest discriminatory capability and provide the most 

contribution to the prediction task (Davoudi et al., 2021). By decreasing the number of dimensions in 
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the data, these techniques can enhance the computational efficiency and generalization capabilities of 

machine-learning models. Moreover, the utilization of feature selection and reduction approaches can 

improve the comprehensibility of the model (Chalo & Aydilek, 2022; Asmororini, Kinda, & Sen, 2024). 

For acquiring insights into the underlying process or making educated decisions, it is vital to 

comprehend the elements or qualities that contribute to a certain forecast in numerous areas. By 

choosing a reduced set of pertinent features, the resulting model becomes more transparent, making it 

easier to understand the link between the features and the target variable. To summarize, exploring 

machine-learning algorithms that utilize feature selection and reduction methods has substantial 

ramifications in many fields. Within the framework of the research study on the detection of Parkinson's 

disease, these techniques can assist in identifying the most significant acoustic characteristics for early 

diagnosis. Nevertheless, it is important to thoroughly analyze the difficulties and crucial factors linked 

to feature selection to guarantee dependable and resilient outcomes. 

This work introduces a resilient machine learning model specifically developed for the 

identification of Parkinson's disease. The model utilizes a comprehensive technique that includes 

several crucial stages. In the initial stage, the data is carefully prepared by doing several tasks such as 

filling in missing values with the mean, adjusting the scale of the data, and using the Synthetic Minority 

Over-sampling Technique (SMOTE) to handle any imbalance in the classes within the dataset. PCA is 

then used to reduce the dimensionality of the data, capturing important information while reducing 

computing complexity. The scientific contributions of this study consist of the complete integration of 

pre-processing, dimensionality reduction, feature selection, and classification, resulting in a 

comprehensive model. This approach not only showcases exceptional precision but also guarantees 

resilience and comprehensibility. The findings underscore the importance of every stage in the process 

of developing the model, providing significant knowledge to the field of Parkinson's disease diagnosis 

and indicating opportunities for further improvement and investigation in the use of machine learning in 

healthcare. 

LITERATURE REVIEW 

The realm of disease diagnosis has undergone a remarkable transformation with the integration 

of machine learning techniques, revolutionizing the accuracy, efficiency, and accessibility of diagnostic 

processes across a spectrum of diseases. This section provides an in-depth exploration of the 

multifaceted landscape of machine learning applications in disease diagnosis, spanning various medical 

domains including Parkinson's disease, cardiovascular diseases, leukemia, and cancer. 

Machine learning has emerged as a pivotal tool in Parkinson's disease (PD) diagnosis, 

leveraging its capability to discern intricate patterns within complex datasets. A study by Dixit et al. 

showcased the potential of support vector machines (SVMs) in distinguishing PD patients from healthy 

individuals based on gait analysis, demonstrating an accuracy of over 90% (Dixit et al., 2023). 

Additionally, deep learning approaches have been employed in PD diagnosis, as demonstrated by Noor 

et al. who introduced a convolutional neural network (CNN) to accurately classify PD from positron 

emission tomography (PET) scans, underscoring the utility of imaging data in diagnosis (Noor et al., 

2020). These studies exemplify how machine learning algorithms can extract meaningful insights from 

heterogeneous data sources, facilitating the identification of disease markers and streamlining diagnosis. 

The convergence of machine learning and cardiovascular disease diagnosis has yielded promising 

outcomes as well. A notable study by Attia et al. developed an artificial intelligence-enabled algorithm 

that accurately identified atrial fibrillation in patients undergoing sinus rhythm based on 

electrocardiogram (ECG) data, highlighting the potential for machine learning to enhance early 

detection of cardiac arrhythmias (Attia et al., 2019). Moreover, Rajkomar et al. demonstrated the 

feasibility of deep learning models in predicting cardiovascular risk factors using electronic health 

records, further emphasizing the role of machine learning in tailoring personalized treatment strategies 

(Rajkomar et al., 2018). These findings underscore the transformative potential of machine learning in 

cardiovascular diagnostics by exploiting the wealth of physiological data to enable accurate risk 

assessment. Moreover, the application of machine learning techniques in leukemia diagnosis has paved 

the way for early detection and classification of hematological malignancies. Siddiqui et al. showcased 

the utility of machine learning in acute myeloid leukemia by predicting patient outcomes based on 

genetic data (Siddiqui et al., 2022). In a different context, deep learning algorithms have been harnessed 

to detect leukemic retinopathy with diagnostic accuracy comparable to expert ophthalmologists, as 

exemplified by the work of Gulshan et al., (2016). These studies accentuate the versatility of machine 
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learning in handling diverse data modalities, facilitating the development of automated diagnostic tools 

for complex diseases. Furthermore, cancer diagnosis, an arena characterized by its complexity and 

heterogeneity, has also been significantly impacted by machine learning advancements. Esteva et al.'s 

pioneering work demonstrated that deep neural networks achieved dermatologist-level accuracy in 

classifying skin cancer from images, highlighting the potential for machine learning to enhance 

diagnostic accuracy in visually-based diagnostics (Esteva et al., 2017). The fusion of genomic and 

imaging data has also enabled the development of machine-learning models capable of predicting 

cancer progression and tailoring treatment strategies, as demonstrated in studies by Brown et al., (2017). 

These examples exemplify the synergy between diverse data sources and machine learning algorithms 

in facilitating early cancer detection and treatment optimization. 

The study Alalayah et al., (2023), examines a collection of factors that can be readily obtained 

from voice analysis, rendering it a highly non-invasive technique. This paper presents a system that 

utilizes various deep-learning approaches to achieve two objectives. One objective is to ascertain 

whether an individual has either severe or non-severe Parkinson's disease. Another goal is to utilize 

regression techniques to quantify the progression of the disease in a specific patient. The UPDRS 

(Unified Parkinson’s Disease Rating Scale) has been utilized by considering both the motor and total 

labels. The most favorable outcomes have been achieved by employing a mixed multi-layer perceptron 

(MLP) that simultaneously classifies and regresses. The crucial characteristics of the obtained data are 

used as input, employing an autoencoder. A remarkable success rate of 99.15% has been attained in 

accurately predicting whether an individual is afflicted with severe Parkinson's disease or non-severe 

Parkinson's disease. A Mean Squared Error (MSE) of 0.15 has been achieved in predicting the degree of 

illness involvement. The work Ali, Salim, & Saeed (2023), investigates the impact of filter feature 

selection, followed by ensemble learning techniques and genetic selection, on the identification of 

Parkinson's disease (PD) patients using attributes derived from voice recordings obtained from both PD 

patients and healthy individuals. This study utilized two separate datasets. The process of feature 

selection involved the removal of quasi-constant characteristics. Subsequently, various classification 

models were evaluated using the refined dataset. The decision tree, random forest, and XGBoost 

classifiers exhibited exceptional performance, particularly on Dataset 1. Notably, the decision tree and 

random forest reached a 100% accuracy rate on this dataset. Subsequently, ensemble learning 

techniques such as voting, stacking, and bagging were employed to see if the performance of the top 

models could be further improved. 

In summary, the integration of machine learning techniques has fundamentally reshaped 

disease diagnosis across various medical domains. The studies reviewed here underscore the 

transformative impact of machine learning in enhancing diagnostic accuracy, enabling early detection, 

and streamlining treatment strategies. By harnessing the power of complex data analysis, machine 

learning is poised to further revolutionize disease diagnosis and contribute to the evolution of 

personalized medicine. 

RESEARCH METHOD 

The Parkinson's disease detection algorithm presented utilizes an extensive machine-learning 

framework specifically developed to improve accuracy and resilience. During the preprocessing step, 

the method tackles issues related to data quality and class imbalance by employing techniques such as 

mean imputation, standardization, min-max scaling, and Synthetic Minority Over-sampling Technique 

(SMOTE). Afterward, the model utilizes Principal Component Analysis (PCA) to reduce the number of 

dimensions in the dataset, making it more efficient while still preserving important information. To 

improve the importance of features, SelectKBest and ANOVA F-test are employed to select the most 

suitable features. The essential aspect of the proposed model is the classification phase, in which it 

exploits the capabilities of Random Forest (RF), Gradient Boosting, XGBoost, and Support Vector 

Machine (SVM) techniques. Every classifier in the ensemble contributes to improving the overall 

prediction capacity of the model. This approach attempts to enhance medical diagnostics by integrating 

preprocessing, dimensionality reduction, feature selection, and different classifiers to create a reliable 

and precise tool for early identification of Parkinson's disease. This section elaborates on the model, 

shown in Figure 1 below, employed in the study, covering data preparation, model selection, training, 

evaluation, and performance metrics. 
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Figure 1. General Proposed Model 

Dataset 

This section provides a comprehensive overview of the Parkinson's disease dataset used in this 

study, along with a detailed explanation of the preprocessing steps employed. The dataset, curated by 

Rahul Rishav Mohanti, accessible on Kaggle (2021), serves as the foundation for evaluating the 

performance of machine learning classifiers in diagnosing Parkinson's disease. The dataset contains 

voice recordings collected from individuals both diagnosed with Parkinson's disease and healthy 

controls. It encompasses 22 acoustic features, including measures of fundamental frequency, intensity, 

and vocal perturbation indices. The dataset comprises 756 instances, with 504 samples corresponding to 

Parkinson's disease cases and 252 samples representing healthy individuals. 

Preprocessing 

To ensure the quality and optimal utilization of the dataset, a series of preprocessing steps were 

meticulously applied. These techniques, supported by recent scholarly works, are outlined below:  

Mean Imputation: Addressing missing data is essential for robust analysis. Mean imputation is a 

straightforward technique for addressing missing data by replacing missing values with the mean of the 

observed values within the same feature. While simple, it assumes that missingness is unrelated to the 

variable's actual value and introduces minimal bias when used judiciously. This method is often 

effective for preserving data integrity when missing values are randomly distributed across the dataset. 

Recent studies advocate for the careful application of mean imputation, considering its implications on 

downstream analyses (Li et al., 2004). Mean imputation involves replacing missing values in the dataset 

with the mean of the available values for that particular feature. Mathematically, for a feature X with 

missing values xmissing, the mean imputation can be expressed as: 

𝑥𝑖𝑚𝑝𝑢𝑡𝑒𝑑 =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
                                                                     … (1) 

Where xi are the non-missing values and n is the total number of non-missing values. 

Mean imputation is a technique used to address missing data by replacing the missing values 

with the mean of the available data. This ensures that the dataset used for model training is complete. 

Ensuring the presence of all values is essential, as the absence of values may result in biased or 

ineffective training of the model. By imputing missing values with the mean, we preserve the general 

distribution of the feature, hence reducing the possible influence on the model's capacity to discern 

patterns from the data. 
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Standardization: Standardization is crucial for preventing features with varying scales from 

dominating model training. Standardization transforms features by scaling them to have a mean of zero 

and a standard deviation of one (Abdulqadir et al., 2021). This process is essential when algorithms are 

sensitive to feature scales, ensuring that no single feature dominates model learning. Standardization 

aids in maintaining equitable influence from all features and facilitates convergence during 

optimization. It is particularly useful for models like k-nearest neighbors and support vector machines 

that rely on distance-based calculations. Standardization involves transforming the values of each 

feature to have a mean of 0 and a standard deviation of 1. The mathematical expression for the 

standardization of a feature X is given by: 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =  
𝑥𝑖 − 𝑚𝑒𝑎𝑛 𝑋

𝑠𝑡𝑑 𝑋
                                                                     … (2) 

Where xi is the original value, mean(X) is the mean of feature X, and std(X) is the standard 

deviation of feature X. 

Standardization guarantees that all features are uniformly scaled, preventing specific features 

from overpowering the model training process due to their larger size. This is especially crucial for 

algorithms that depend on distance measures, such as SVM. 

Min-Max Scaling: Ensuring features within specific ranges is pivotal for models sensitive to 

feature scales. Min-Max scaling scales features to a specified range, often between 0 and 1 (Chawla et 

al., 2002). This technique is valuable when features have varying scales and must be adjusted to 

comparable ranges. Min-Max scaling maintains the relative relationships between feature values while 

ensuring that each feature's contribution to the model is uniform. Min-Max scaling transforms the 

values of each feature to a specified range, commonly between 0 and 1. The mathematical expression 

for Min-Max scaling of a feature X is given by: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥𝑖 − 𝑚𝑖𝑛 𝑋

max 𝑋 − min 𝑋
                                                                     … (3) 

Where xi is the original value, min(X) is the minimum value of feature X, and max(X) is the 

maximum value of feature X. 

Min-Max scaling guarantees a uniform scale for all features, which is advantageous for 

algorithms that are influenced by the size of input features. It aids in mitigating the dominance of 

specific features due to their original scale, resulting in enhanced convergence and performance across 

different machine-learning models. 

SMOTE for Class Imbalance: Addressing class imbalance is crucial for balanced model 

learning. SMOTE (Synthetic Minority Over-sampling Technique) combats class imbalance by 

generating synthetic instances of the minority class, thus creating a balanced training dataset (Chawla et 

al., 2002). Synthetic instances are generated by interpolating between existing minority samples. This 

technique mitigates the bias towards the majority class, preventing the classifier from being overly 

influenced by the dominant class. 

Principal Component Analysis (PCA) 

One of the popular dimensionality reduction algorithms, Principal Component Analysis (PCA), 

is an unsupervised statistically working algorithm that converts the values of correlated features into 

linearly uncorrelated features called principal components. PCA is a commonly employed method in the 

fields of machine learning and statistics for reducing the dimensionality of data (Zebari et al., 2020). 

Reducing dimensionality aids in handling high-dimensional data and minimizing overfitting. PCA is a 

dimensionality reduction technique that transforms high-dimensional data into a lower-dimensional 

space while preserving variance. It identifies orthogonal components, known as principal components, 

that capture the maximum variance in the data. This reduction aids in mitigating the curse of 

dimensionality, enhancing model efficiency, and addressing multicollinearity. The algorithm depends 

on the mathematical concepts of variance, covariance, eigenvalues, and eigenvectors. The dimensions 

refer to the number of features in the dataset. The correlation refers to the correlation between two 

features; when components are orthogonal, the relationship between the two features is zero. The 

algorithm standardizes the dataset so that the features are of high variance. However, if the variance is 

independent of the significance of the features, then the algorithm will divide each distinct value by the 

standard deviation of all the features. The Z covariance matrix contains the variance between two pairs 
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of features. Eigenvectors represent axes of information with a high variance that has eigenvalues. The 

algorithm arranges the eigenvalues in descending order and the eigenvectors in descending order in the 

P matrix. After that, the Z covariance matrix is multiplied by the P matrix to get new features. Finally, 

essential and relevant features are preserved and less critical features are removed to produce a new 

dataset. 

Feature Selection using SelectKBest and ANOVA F-test 

Feature selection is a crucial step in machine learning to identify and retain the most 

informative features while discarding less relevant ones. The goal of feature selection is to identify the 

most informative features that contribute significantly to the predictive power of the model while 

discarding less relevant ones. SelectKBest, in conjunction with the ANOVA F-test, is employed to 

achieve this objective. Feature Selection using SelectKBest and the ANOVA F-test is a powerful 

technique to enhance the efficiency and interpretability of machine learning models by focusing on the 

most discriminative features for Parkinson's disease classification. Feature selection enhances model 

efficiency by retaining the most informative attributes. The `SelectKBest` method, combined with the 

ANOVA F-test scoring function, identifies the top K features with the highest F-test scores. This 

method retained the top K features with the highest F-test scores (Aighuraibawi et al., 2023). ANOVA 

assesses the variance between group means, making it particularly useful for selecting features that 

exhibit significant variation across different classes. This technique ensures that only the most relevant 

attributes are retained, streamlining model training and reducing computational complexity. 

The combined application of these preprocessing techniques meticulously prepared the dataset 

for subsequent machine learning model training and evaluation. By imputing missing values, 

standardizing and scaling features, selecting relevant attributes, performing dimensionality reduction, 

and addressing the class imbalance, the dataset's integrity was fortified, and the classifiers' performance 

was optimized. SelectKBest is a univariate feature selection method, meaning it evaluates each feature 

independently of the others. This is different from multivariate methods, which consider interactions 

between features. The ANOVA F-test is a statistical test used to assess whether the means of multiple 

groups are significantly different. In the context of feature selection, it helps determine if the 

distribution of a particular feature varies significantly across different classes or groups. 

• Null Hypothesis (H0): The means of the groups are equal. 

• Alternative Hypothesis (H1): At least one group's mean is different. 

The F-statistic is calculated by comparing the variance between group means to the variance 

within groups. A higher F-statistic indicates more significant differences in means. 

𝐹 =  
𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
  …(4) 

The F-statistic is used to compute a p-value, representing the probability of obtaining the 

observed F-statistic if the null hypothesis is true. A low p-value suggests that at least one group's mean 

is significantly different. Each feature is assigned a score based on its p-value from the ANOVA F-test. 

Lower p-values indicate more significant differences and higher scores are assigned to features that 

contribute more to class separability. SelectKBest then selects the top k features with the highest scores, 

where k is a user-defined parameter. These selected features are considered the most relevant for the 

classification task. 

Classification 

This section presents a detailed overview of the four classifiers employed in this study, 

including their principles, definitions, and operational methods. 

Random Forest is an ensemble learning technique that constructs a multitude of decision trees 

during training and outputs the mode of the classes as the prediction. It combines the strengths of 

individual decision trees while mitigating overfitting by introducing randomness in both the data and 

feature selection processes. Each decision tree is trained on a bootstrapped subset of the training data 

and considers a random subset of features at each split. The final prediction is determined through a 

majority vote of the individual trees' predictions. Random Forest is robust, capable of handling high-

dimensional data, and provides insights into feature importance through its Gini impurity or information 

gain metrics (Taher et al., 2021). 



Jurnal Ilmiah Ilmu Terapan Universitas Jambi 

 

                                                           Page | 416  
 

 
Figure 2. Random Forest Classifier 

 

Gradient Boosting is an ensemble technique that constructs a strong learner by sequentially 

adding weak learners. It aims to minimize the residual errors of the preceding learner by training the 

next one. Each weak learner is typically a shallow decision tree. Gradient Boosting adjusts the target 

values of the dataset at each iteration to focus on the instances that were misclassified or have high 

residuals. This iterative process results in a strong predictive model. The technique's principal strength 

lies in its ability to handle complex relationships and achieve high predictive accuracy. 

 

Figure 3. Light GBM 

 

XGBoost is an optimized gradient-boosting algorithm known for its efficiency and high 

performance. It incorporates a regularization term in its objective function to prevent overfitting. 

XGBoost employs techniques such as pruning, column block structures, and approximate tree learning 

to achieve faster training times while maintaining predictive accuracy. It also allows for handling 

missing data and provides mechanisms for handling imbalanced datasets. XGBoost has gained 

popularity for its consistent performance across diverse applications (Chen & Guestrin, 2016). 

Support Vector Machine (SVM) 

SVM is a powerful machine learning algorithm used for both classification and regression 

tasks. SVM aims to find a hyperplane that maximizes the margin between classes while minimizing 

classification errors. It transforms input data into a higher-dimensional space through kernel functions, 

enabling the separation of classes that are not linearly separable in the original feature space. SVM's 

versatility and effectiveness in handling complex decision boundaries have made it a widely adopted 

choice in various domains. Generating feature vectors: Every text document is depicted as a feature 

vector, where each component of the vector corresponds to a particular word in the lexicon. Each 

element's value represents the frequency of the corresponding word in the document or another measure 

of its significance. Partitioning the data into training and test sets: A frequent practice is to divide the 
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data into a training set, which is used to train the model, and a test set, which is used to assess the 

model's performance. SVM model training: This entails identifying the hyperplane that optimally 

separates the distinct classes by maximizing the margin. The SVM model is trained using an 

optimization approach that fine-tunes the model's parameters to minimize the classification error. 

Assessing the model's performance: After training, the model can be examined by testing it on the test 

set to determine its effectiveness. 

 

 
Figure 4. SVM Classifier 

 

Model Evaluation 

The trained classifiers were evaluated using a separate testing dataset. Standard evaluation 

metrics, including Accuracy, Precision, Recall, F1-Score, and ROC AUC, were computed to quantify 

the classifiers' performance in predicting Parkinson's disease cases and healthy individuals. The 

evaluation provided insights into each classifier's ability to correctly classify cases, minimize false 

positives, and capture true positives. The performance metrics obtained from each classifier were 

compared to assess their efficacy in Parkinson's disease classification. The focus was on identifying 

which classifier exhibited the highest accuracy, precision, recall, F1-Score, and ROC AUC, considering 

the dataset's characteristics and preprocessing steps. 

This model section outlines the systematic approach taken in the study, from data preprocessing 

to classifier selection, training, evaluation, and performance comparison. Relevant references support 

the rationale and significance of each model aspect. This section presents the comprehensive results 

obtained from the evaluation of the selected classifiers on the Parkinson's disease dataset, after 

employing various preprocessing techniques. The evaluation metrics, including Accuracy, Precision, 

Recall, F1-Score, and ROC AUC, are reported. 

RESULTS AND DISCUSSION 

The table displays the prognostic accuracy of different classifiers in identifying Parkinson's 

disease using a unique dataset. Out of all the classifiers evaluated, Gradient Boosting exhibited the best 

accuracy of 66.96%, highlighting its efficacy in accurately categorizing occurrences. The classifier had 

a precision of 70.11%, suggesting a significant number of correct positive predictions. Furthermore, its 

impressive recall rate of 89.47% highlights its expertise in accurately detecting patients with Parkinson's 

disease. The F1 score of 82.75% indicates a harmonious blend of precision and recall. Moreover, the 

Gradient Boosting model achieved an Area Under the ROC Curve (AUC) of 78.63%, demonstrating a 

robust capability to differentiate between Parkinson's and non-Parkinson's patients. Although classifiers 

like Random Forest, XGBoost, and SVM showed different levels of performance, the specific metrics 

indicate that Gradient Boosting is a favorable option for predicting Parkinson's disease in the provided 

dataset. 
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Table 1. Predicted Results for Original Dataset 

Classifier\Metric Accuracy Precision Recall F1 Score AUC 

Random Forest 57.85 57.78 77.03 76.05 69.11 

Gradient Boosting 66.96 70.11 89.47 82.75 78.63 

XGBoost 60.07 67.77 85.39 78.04 77.93 

SVM 54.31 56.46 73.31 72.55 68.52 

 

Random Forest demonstrated enhanced prediction ability on the preprocessed dataset, with an 

accuracy of 68.76%. The accuracy of 68.22% signifies that the model correctly predicted the presence 

of Parkinson's disease approximately 68.22% of the time. The recall rate of 76.03% indicates a 

significant capacity to accurately detect patients with Parkinson's disease, while the F1 score of 81.01% 

represents a well-balanced compromise between precision and recall. The AUC value of 75.77% 

accurately represents the classifier's ability to distinguish between different classes. The Gradient 

Boosting classifier exhibited outstanding performance on the preprocessed dataset, attaining an 

accuracy of 84.46%. Gradient Boosting achieved a precision of 83.02%, indicating a high level of 

accuracy in positive predictions. Significantly, it attained a flawless recall rate of 100%, demonstrating 

its capacity to accurately detect every individual with Parkinson's disease. The F1 score, which is at 

85.83%, demonstrates a strong equilibrium between precision and recall, while the AUC, which is 

87.93%, emphasizes its exceptional ability to discriminate. XGBoost exhibited robust predictive 

capability on the preprocessed dataset, with an accuracy of 78.37%. The precision of 79.09% implies 

that a high proportion of positive predictions are accurate, while the recall of 87.98% reveals that a large 

number of individuals with Parkinson's are effectively identified. The F1 score, which stands at 84.96%, 

indicates a well-balanced combination of precision and recall. Similarly, the AUC value of 83.90% 

demonstrates its capacity to differentiate between different classes. The Support Vector Machine 

attained a precision of 66.67% on the preprocessed dataset. The precision of 67.04% indicates that the 

positive predictions made by SVM are reasonably accurate, while the perfect recall of 100% suggests 

that SVM correctly recognized all patients with Parkinson's disease. The F1 score of 80.20% indicates a 

robust equilibrium between precision and recall. Nevertheless, the AUC value of 70.05% suggests a 

marginally inferior discriminatory capability when compared to alternative classifiers. 

 

Table 2. Predicted Results for Preprocessed Dataset 

Classifier\Metric Accuracy Precision Recall F1 Score AUC 

Random Forest 68.76 68.22 76.03 81.01 75.77 

Gradient Boosting 84.46 83.02 100 85.83 87.93 

XGBoost 78.37 79.09 87.98 84.96 83.90 

SVM 66.67 67.04 100 80.2 70.05 

 

Table 2 displays the results of different classifiers in detecting Parkinson's disease. The dataset 

used for this analysis was preprocessed and underwent Principal Component Analysis (PCA) to reduce 

its dimensions. Following the use of PCA, all classifiers demonstrated enhanced prediction ability in 

comparison to the initial preprocessed dataset. Gradient Boosting surpassed the other methods with an 

accuracy of 91.04%, demonstrating superior precision (93.87%) and recall (90.08%), leading to a well-

balanced F1 score of 89.34%. XGBoost and Random Forest exhibited improved accuracy, with 

XGBoost achieving 88.98% and Random Forest achieving 82.55%. Additionally, both models revealed 

well-balanced precision, recall, and F1 scores. Nevertheless, the Support Vector Machine (SVM) 

demonstrated a lower Area Under the Curve (AUC) of 73.70% in comparison to other classifiers, 

indicating a comparatively lesser capacity to discriminate. In summary, the findings demonstrate that 

Principal Component Analysis (PCA) has a beneficial effect on the performance of models. Among the 

classifiers tested, Gradient Boosting proves to be the most successful in accurately predicting 

Parkinson's disease in this reduced-dimensional scenario. 
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Table 3. Predicted Results for Preprocessed with PCA 

Classifier\Metric Accuracy Precision Recall F1 Score AUC 

Random Forest 82.55 92.83 86.73 87.64 84.49 

Gradient Boosting 91.04 93.87 90.08 89.34 88.65 

XGBoost 88.98 87.72 90.33 89.64 86.05 

SVM 80.05 88.87 85 86.48 73.70 

 

The Random Forest classifier demonstrated favorable performance with an Accuracy of 0.8974. 

This classifier excelled in Precision 0.9630, demonstrating a high ability to correctly classify positive 

instances. The Recall value of 0.8966 indicated that the classifier effectively captured a substantial 

portion of true positive cases. The F1-Score 0.9286 highlighted the balanced trade-off between 

Precision and Recall, while the AUC value 0.8983 indicated the classifier's ability to distinguish 

between the two classes. The Gradient Boosting classifier exhibited superior performance, attaining an 

impressive Accuracy of 0.9487. This classifier achieved high Precision 0.9655, ensuring precise 

classification of positive cases. The Recall value of 0.9655 underscored the classifier's exceptional 

ability to identify true positive instances. The F1-Score 0.9655 indicated harmonious Precision-Recall 

balance, while the AUC value 0.9328 indicated strong discrimination power between classes. The 

XGBoost classifier achieved an Accuracy of 0.9231, demonstrating robust performance. With a 

Precision of 0.9643, it displayed proficient identification of positive cases. The Recall value of 0.9310 

reflected the classifier's ability to capture a substantial portion of true positives. The F1-Score 0.9474 

indicated a commendable equilibrium between Precision and Recall. The AUC value 0.9155 

emphasized the classifier's discriminative capability. The SVM classifier yielded an Accuracy of 

0.7692. The Precision of 0.9167 highlighted its accurate positive instance classification. With a Recall 

value of 0.7586, it demonstrated effective identification of true positive cases. The F1-Score 0.8302 

revealed a harmonious Precision-Recall balance. The AUC value 0.7793 indicated the classifier's ability 

to discriminate between classes. These results provide comprehensive insights into the classifiers' 

performances in diagnosing Parkinson's disease. Gradient Boosting emerged as the most accurate and 

balanced classifier, closely followed by XGBoost and Random Forest. SVM demonstrated competitive 

performance despite its lower accuracy, emphasizing its utility in certain scenarios. 

 

Table 4. Predicted Results for Proposed Model 

Classifier\Metric Accuracy Precision Recall F1 Score AUC 

Random Forest 89.74 96.30 89.66 92.86 89.83 

Gradient Boosting 94.87 96.55 96.55 96.55 93.28 

XGBoost 92.31 96.43 93.10 94.74 91.55 

SVM 76.92 91.67 75.86 83.02 77.93 

 

Figure 5 presents the performance metrics of various classifiers in detecting Parkinson's disease 

under three scenarios: the original dataset, the preprocessed dataset, and the preprocessed dataset with 

dimensionality reduction using Principal Component Analysis (PCA). Every row corresponds to a 

distinct classifier, while the columns represent different assessment measures. The graphic demonstrates 

a steady trend of enhanced performance across all classifiers as we progress from the initial dataset to 

the preprocessed dataset and then to the dataset with PCA. The proposed strategy, which includes 

preprocessing and PCA, consistently achieves superior performance compared to other scenarios across 

all classifiers. Gradient Boosting emerges as the highest-performing classifier in all situations, 

demonstrating a significant increase in accuracy from 66.96% in the original dataset to 94.87% with the 

suggested approach. Likewise, Random Forest, XGBoost, and SVM also demonstrate substantial 

improvements in accuracy when transitioning from the initial dataset to the suggested approach. This 

trend highlights the efficacy of the combined preprocessing and dimensionality reduction technique in 

improving the prediction capacities of these classifiers for detecting Parkinson's disease.  
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Figure 5. Parkinson’s Detection Results 

 

Table 5 presents various methods used for MS detection along with the corresponding 

algorithms employed and their associated accuracy scores. The methods encompass diverse algorithms 

such as Random Forest, Feature Reduction, Hybrid LSTM+GRU, XGBoost, Convolutional Neural 

Networks, and the proposed approach utilizing Gradient Boosting. Accuracy scores range from 72% to 

99%, indicating the efficacy of each method in diagnosing MS from retinal images. The proposed 

Gradient Boosting method showcases a promising accuracy of 94.87%. 

 

Table 5. Comparison with Previous Studies 

Method Algorithm Accuracy (%) 

Govindu & Palwe (2023) RF 91.83 

Alalayah et al (2023) FR 99 

Rehman et al (2023) Hybrid LSTM+GRU 98 

Park et al (2022) XGBoost 72 

Sayed et al (2022) XGBoost 92 

Hossein Tabatabaei (2020) CNN 91 

Proposed Gradient Boosting 94.87 

 

CONCLUSION 

In light of recent medical advancements emphasizing the critical role of early diagnosis in 

Parkinson's disease treatment, this study delved into the realm of machine learning to enhance the 

accuracy of classification. The research hinged on the premise that precise classification can greatly 

impact the efficacy of treatment interventions. The study investigated the performance of four 

prominent classifiers Random Forest, Gradient Boosting, XGBoost, and Support Vector Machine 

(SVM) in accurately diagnosing Parkinson's disease, leveraging a comprehensive dataset and a range of 

preprocessing techniques. The results underscore the significance of this endeavor, as they vividly 

demonstrate that accurate diagnosis can be substantially improved using machine learning techniques. 

Among the classifiers, Gradient Boosting emerged as the frontrunner, achieving an impressive accuracy 

of 0.9487 and excelling in other key metrics, including Precision, Recall, F1-Score, and ROC AUC. 

XGBoost and Random Forest closely followed, also showcasing commendable performances. The 

SVM, while demonstrating competitive results, reaffirms its potential in specific contexts. The 

implications of these findings are far-reaching. A reliable classifier holds the promise of early 

identification, leading to more effective interventions and improved patient outcomes. This study not 

only contributes to the growing body of research on Parkinson's disease diagnosis but also underscores 

the potential of machine learning in the realm of medical advancements. In a broader context, the 

research underscores the importance of collaborative efforts between the fields of medicine and 

machine learning. Harnessing the power of data-driven techniques to enhance medical diagnosis holds 

immense potential for transforming healthcare practices. As medical knowledge continues to evolve, 

embracing cutting-edge technologies like machine learning becomes paramount to driving progress and 

improving lives. In conclusion, the outcomes of this study not only affirm the criticality of early 
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diagnosis in Parkinson's disease but also spotlight the efficacy of machine learning classifiers in 

achieving this goal. The fusion of medical expertise and advanced technological solutions holds 

immense promise for shaping the future landscape of disease diagnosis and treatment. 
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