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Abstract 

In this paper, we account for memory failure or otherwise in the daily evolution of stock 

return and volatility within the purview of short and long ranges based on the arrival of 

fundamental news. This accounts for the return on assets in the current period to be a 

function of returns realized in the pasts. To achieve this objective, we estimated ARMA, 

ARFIMA, GARCH, FIGARCH and HYGARCH models. After implementing 

maximum likelihood estimation technique, we found out that the ARMA coefficients 

were not significant, the GARCH coefficients were significant and the memory 

coefficients in terms of ARFIMA, FIGARCH and HYGARCH were statistically 

significant. In the light of these, we propose the rejection of efficient hypothesis in the 

long range and document a single memory in volatility in the short range. The study 

recommends that ARFIMA and HYGARCH are the best forecasting models for return 

and volatility respectively in the Nigerian stock market. 
 
Keywords: Forecasting models, Memory failure, Nigeria, Short range and long range 

horizons, Stock-return volatility 
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INTRODUCTION 

Changes in prices simply reflect the random arrivals of fundamental news in the 

stock market. Efficient Market Hypothesis (EMH) subsequently faces both theoretical 

and empirical challenges and gradually loses its ground just as other once-fully 

supported economic theories must encounter at some stages. One of the theoretical and 

empirical challenges is the existence of short and long memory in asset return which 

suggests that current returns are severely dependent on distant past realized returns. This 

does not only create opportunities for arbitrage profits but it also makes it possible for 

future returns to be predicted from past returns. The existence of long-memory 

properties involves the development of non-linear pricing models at the theoretical level 

to account for the long-memory behaviour.  

As a result, Yajima (1985) concludes that if the underlying continuous stochastic 

processes of asset returns exhibit long memory, then the pricing derivatives by 

martingale models as well as the statistical inference concerning asset-pricing models 

based on standard testing procedures may not be appropriate. Since the introduction of 

models of autoregressive conditional heteroscedasticity (ARCH) by Engle (1982) and 
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their generalization by Bollerslev (1986), there have been numerous extensions of this 

approach to modelling the short and long memory volatility properties of asset prices 

(Baillie,Bollerslev & Mikkeslen, 1996). 

This current study is in close tandem with the above-mentioned studies. In the 

study we applied batteries of ARMA and GARCH to examine the daily evolution of 

stock return and volatility in Nigerian stock market over short and long range horizons. 

We show that the long-range memory parameter is significant in the HYGARCH 

model, and we recommend equally that HYGARCH model is the best predictive model 

for speculators in Nigeria, since the HYGARCH error seems to have permanent effects 

on conditional volatility.  

Booth & Koutmos (1988) carried out a study to model index stock returns for four 

major European stock markets as conditionally heteroskedastic processes with time 

dependent serial correlation. They found that current returns in these markets are 

nonlinearly dependent on their past history. The study concluded that the periods of 

high (low) volatility are associated with low (high) autocorrelations. This inverse 

relationship is significant in daily returns but, with one exception, it does not carry over 

to the weekly returns. The study recommended that substantial portion of remaining 

nonlinearity in the conditional mean of all stock index returns examined can be 

attributed to positive feedback trading strategies. 

Campbell, Grossman, & Wang (1993) investigated the relationship between 

aggregate stock market trading volume and the serial correlation of daily stock returns. 

They found that the first-order daily return autocorrelation tends to decline with volume. 

Also, their study found that risk-averse "market makers" accommodate buying or selling 

pressure from "liquidity" or "non informational" traders. The study concluded that a 

stock price decline on a high-volume day is more likely than a stock price decline on a 

low-volume day to be associated with an increase in the expected stock return. 

Andersen, Bollerslev, Diebold, & Ebens (2000) exploit direct model-free 

measures of daily equity return volatility and correlation in the Dow Jones Industrial. 

They found that the unconditional distributions of the variances and covariances are 

leptokurtic and highly skewed to the right, while the logarithmic standard deviations 

and correlations all appear approximately Gaussian. They concluded that Positive 

returns have less impact on future variances and correlations than negative returns of the 

same absolute magnitude. Whereas, Bianco, Corsi, & Ren`o (2008) confirmed the 

presence of LeBaron effect at intraday level complementing the efficient market 

hypothesis (for returns) with the heterogeneous market hypothesis (for volatility). They 

tested for the impact of unexpected volatility, defined as that part of volatility that 

cannot be forecast due to the presence of serial correlations in the time series. They 

found that contemporaneous volatility is significantly and positively correlated with the 

variance ratio. The study concluded that serial correlation is positively correlated with 

unexpected volatility, which is a previously unrecognized stylized fact of financial 

returns. The study recommended that the usual explanation of the LeBaron effect in 

terms of feedback trading is at least incomplete, advocating for a broader theory on the 

link between volatility and the way information is spread to heterogeneous market 

components. 

Furthermore, David & Simonovska (2015) investigated whether correlated beliefs 

among sophisticated, but imperfectly informed traders can account for the patterns of 

return correlations across countries. They made use of calibrated information-based 

model to establish the correlation of beliefs. The study found that market-wide volatility 

explained the cross-section of aggregate volatility. The results are robust to controlling 
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for a number of alternative factors put forth by the existing literature. In furtherance of 

the significance of information in stock-return volatility, Balibey & Turkyilmaz (2014) 

examined the convenience of the FIGARCH (1, d, 1) and FIAPARCH (1, d, 1) models 

in evaluating asymmetry features and long memory in the volatility of the Turkish Stock 

Market. The study confirmed that the FIAPARCH (1, d, 1) model with skewed student-t 

distribution is more accurate for in-sample and out of- sample Value-at-Risk (VaR) 

analysis for short and long trading positions. In addition, the FIAPARCH (1, d, 1) 

model with skewed student-t has better accuracy results in capturing stylized facts in the 

volatility of Turkish Stock Market. The study concluded that evaluating of asymmetry 

and long memory property in volatility of the returns can ensure suitable Value-at-Risk 

(VaR) model selection for performance of risk management in the Turkish financial 

markets. The study therefore recommended that the findings can be used by portfolio 

managers, investors, regulators and financial risk managers in decision making. 

Günay (2014) examined the long memory property of conditional variance 

considering the existence of structural breaks in the series. Empirical analysis was 

conducted through FIGARCH, HYGARCH, GPH and modified GPH method of 

Phillips. The sequential method of Bai-Perron multiple structural breaks analysis 

indicated 3 and 4 breaks for the BIST100 and the BOVESPA indexes, respectively. The 

study found that conditional variance of both indexes have long memory property, that 

is, both indexes’ volatilities are foreseeable under the past price information. The study 

concluded that there is presence of information conflicts with the weak form of the 

Efficient Market Hypothesis. 

Hongngoc (2014) investigated the long memory returns for ETF (Emerging 

Markets Equities) returns index of seven Asian countries during 2008-2013 periods. 

The ARFIMA, ARFIMA-FIGARCH and ARFIMA-HYGARCH models were 

estimated. The empirical results of log-likelihood information criterion analyses the 

statistics that support ARFIMA-HYGARCH model instead of ARFIMA and ARFIMA-

FIGARCH model. The study found that the maximum values of log-likelihood of six 

series felt in estimations of ARFIMA-HYGARCH model. The study concluded that 

ARFIMA-HYGARCH model performs better than ARFIMA-FIGARCH and AFIMA 

models. However, Mohammadi & Rezakhah, (2017) adopted Smooth Transition 

HYGARCH Model to analyze the time-varying structure with short and long memory 

property. The study found that ST-HYGARCH models outperform the HYGARCH 

model in forecasting. The study concluded that ST-HYGARCH models better forecast 

the true conditional variances than HYGARCH and the ST-HYGARCH (3) model have 

lower errors than to other models. 

Watanabe (2002) examined the pattern of autocorrelation of daily stock index 

returns in the Tokyo Stock Exchange (TSE) by estimating the two variants of the 

EGARCH model by Nelson (1991). The study confirmed that stock returns exhibit 

positive autocorrelation when volatility is low but they exhibit negative autocorrelation 

when volatility is rather high and that stock returns are more negatively autocorrelated 

after price declines than after price rises. The study concluded that an increase in margin 

requirements makes stock returns more positively autocorrelated. 

On a final note, Bollerslev, Osterrieder, Sizova & Tauchen (2013) provided a 

detailed characterization of the dynamic dependencies and interrelatedness in aggregate 

stock market returns and volatilities using fractionally integrated processes. The study 

found that the coherence between volatility and the volatility risk reward is the strongest 

at long-run frequencies. Our results are consistent with generalized long-run risk models 

and help explain why classical efforts of establishing a naive return-volatility relation 
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failed. The study concluded that high-frequency-based multivariate model implies 

nontrivial return predictability over longer monthly horizons. 

 

METHODOLOGY 

The central focus of this study is to examine the short run and long run linear 

dependencies of return and volatility in Nigerian stock market. To achieve these, we 

propose the so called ARMA-GARCH and ARFIMA-HYGARCH models. Specifically 

we follow the approaches of Davidson (2004) and Zhou, Chen & Dong (2012). First we 

specify the ARMA and ARFIMA model. 

The ARMA and ARFIMA specifications 

The ARMA model provides the framework for examining short memory in return. 

It can be defined in terms of return on stock market as: 

1 1 1 1, , , , , ,t t p t p t t q t qr a r a r e b e b e           .................................................................. 3.1                            

Equation 3.1 is ARMA (p, q) model, which can be transformed by introducing backshift 

(B) into it to have a more compacted definition. 

1 1(1 , , , ) (1 , , , )p q

p t q ta B a B r b B b B e        ............................................................... 3.2 

( ) ( )t ta B r b B e  ............................................................................................................. 3.3 

If the AR polynomial lies outside the unit cycle that is 
1

( ) 1 1
p

i

i

i

a B a B


   , 

which means the sum of all AR roots is less than unity, and the MA polynomial lies 

outside the unit cycle that is 
1

( ) 1 1
q

i

i

j

b B b B


   , which means the sum of all MA 

roots is less than unity, the ARMA will useful for studying the short memory 

characteristic of return. However, if 
1

( ) 1 1
p

i

i

i

a B a B


    and
1

( ) 1 1
q

i

i

j

b B b B


   , the 

appropriate specification is referred to ARIMA (p, d, q), where p is the lag length of the 

AR term, d is the differenced or integrated order and q is the lag length of the MA term. 

Thus, the first differenced ARIMA (p, 1, q) can be defined as: 

1ln lnt t tr p p   ...........................................................................................................  

3.4 

(1 ) lnt tr B p   ............................................................................................................. 3.5 

1 1(1 ,, , )(1 ) ln (1 ,, , )p q

p t q ta B a B B p b B b B e         ................................................. 3.6 

Equation 3.6 is not different from equation 3.2, but we can have a different 

equation if we move to second difference: 
2(1 ) lnt tr B p  ............................................................................................................ 3.7                                                                                                                      

2

1 1(1 , , , )(1 ) (1 , , , )p q

p t q ta B a B B in b B b B e         ................................................... 3.8                                                               

This may continue provided the system is not stationary. On this basis we can 

specify integrated order as: 

1 1(1 , , , )(1 ) ln (1 , , , )p d q

p t q ta B a B B p b B b B e         ...............................................3.9 

If d is equal to 1, then equation 3.9 is reduced to 6 or 3, and the short run 

dependency can be examined. However, if d is less than 1, we have Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) of order p, m, q, where m=1+d. 
1

1 1(1 ,, , )(1 ) ln (1 ,, , )p d q

p t q ta B a B B p b B b B e        ........................................... 3.10 
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1 1(1 , , , )(1 )(1 ) ln (1 ,, , )p d q

p t q ta B a B B B p b B b B e         .................................... 3.11 

1

1

(1 , , , )
(1 , , , )(1 ) ln

(1 )

q

q tp

p t d

b B b B e
a B a B B p

B

  
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
.............................................   3.12 

The fractionally differencing operator (1 )dB can be defined as. 
2 3 4( 1) ( 1)( 2) ( 1)( 2)( 3)

(1 ) 1 ...
2 3 2 4!

d d d B d d d B d d d d B
B dB

X

     
       ...

 
..3.13 

Using hyper geometric function equation 3.13 can be represented as: 

0

( 1)
(1 ) (1)

( 1) ( 1)

d k k

k

d
B B

k d k



 






  

  
 ....................................................................3.14 

Once d is determined, 
( 1)

(1)
( 1) ( 1)

k d

k d k



 




  
 can be expressed as a function of k [h 

(k)], therefore
0

(1 ) ( )d k

k

B h k B




  . This can be determined by fractionally integrating 

(fi) the 
1( ,..., )t qe e e  series. Then the series would yield ( ,..., )t t qfi fi fi   series to 

have a well-simplified expression as: 
1 2 1 2

1 , , , ...p

t t p t t t q t q t qr a Br a B r fi e b fi e 

       ........................................................ 3.15 

Equation 3.15 is referred to ARFIMA (p, d, q), where d=1-m, m is expressed in 

fraction or percentage. And this can be used to study the long memory or long range 

linear dependency in return. We can now present the GARCH and HYGARCH models, 

which are required to examine short memory and long memory in volatility 

respectively. 

The GARCH and HYGARCH specifications 

The ARMA error in equation 3.2 is assumed to follow GWN process, which is 

defined as: 

t te z h ....................................................................................................................  3.16 
2 2~ (0, ); ~ (0, ) 0;t t tGWN Gz WNe h   . According to Bollerslev (1986) and in line 

with these assumptions the standard GARCH model is written as: 
2 2

0 1 1 1 1 1... ...t t q t q t t ph c c e c e h h            ..............................................................3.17 

Equation 3.17 describes GARCH (q, p) model, which explains the short run 

dependency in volatility of return. This equation can be rewritten as: 
2

0( ) ( )t tB h c c B e    ..................................................................................................3.18 
2 2( ) (1 )t tc B e B e   ..................................................................................................3.19                                                                                                                                                                                   

20 1
(1) ( )

t t

c B
h e

B



 

 
   

 
.............................................................................................. 

3.20                       

The integrated GARCH model can be specified by introducing 1-B into equation 

3.20 to have 

20 (1 )
1

(1) ( )
t t

c B B
h e

B



 

 
   

   

..................................................................................... 3.21                     

If the GARCH error is integrated d times, the expression 3.21 can be restated as: 
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t t

c B B
h e

B



 

 
   

 
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Equation 3.22 is referred to as Fractionally Integrated GARCH (FIGARCH) 

model introduced by Baillie, Bollerslev & Mikkeslen (1996). The model has two 

components the amplitude ( S ) and fractionally differencing (1 )dB . Baillie et al (1996) 

defined (1) 1S   . This indicates that FIGARCH is not covariance stationary because

1S  . This may contradicts the assumption that the length of the memory increases as d 

increases (Davidson, 2004). Another shortcoming of FIGARCH is that it has infinite 

variance. To overcome these weaknesses, Davidson (2004) proposed Hyperbolic 

GARCH (HYGARCH) specification, which assumes that 1S  , by introducing another 

parameter   into the lag polynomial, HYGARCH expressed as: 

20 [1 (1 ) 1]
1

(1) ( )

d

t t

c B B
h e

B

 

 

   
   

 
 

1 c     

1 (1 ) 1
c

s 


    .........................................................................................................3.25 

Equation 3.25 shows that the length of the memory increases as the d increases. 

So, HYGARCH is a generalization of the FIGARCH model. It is adopted in this study 

to examine the long run dependency in volatility of return.  

 

RESULTS AND DISCUSSIONS 

Data on all share index from Nigerian Stock Exchange (NSE) were collected on 

daily basis over the period 2000 to 2016. The preliminary tests conducted on these data 

indicate the features of the index. Table 1 presents the results of normality test. 

Table 1.Normality test results 

Stat                                            Value                       T-value                                P-value                                

Skewness            0.61734                        16.273                             1.5394e-059 

Excess Kurtosis                          23.739                       312.95                                 0.0000 

Jarque-Bera                                 98086                          NA                                   0.0000 

Lilliefors (D) 0.092636      NA 0.0000 

Cramer-von Mises 16.52897 16.53095 0.0000 

Watson (U2) 16.49779 16.49977 0.0000 

Anderson-Darling  93.81322 93.83012 0.0000 

Mean                                    0.0004375                     10.67264                          0.0000 

Source: Authors’ Computation 

In Table 1, the mean or average value of stock market return is 0.00044 and 

significantly different from zero and negative, implying a very low average value. The 

preposition of normality is rejected by Jarque-Bera, Lilliefors, Cramer-von Mises, 

Watson and Anderson-Darling tests. The excess kurtosis is positive and significant, 

giving evidence of peakness or leptokurtic distribution. The coefficient of skewness is 

approximately one or greater than zero. This means the Nigerian stock market return is 

asymmetric and follows a nonlinear historical pattern. For purpose of iteration, the 

nonlinearity and leptokurtic tendencies are demonstrated in Figures 1 and 2 (Appendix) 

respectively 

Figure 1shows that the distribution of Nigerian stock market return is peaked. 

This indicates presence of outlier, asymmetry, and high expectation of future values. 

...................................................................3.23 

....................................................................................................................3.24 
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The scatter plot, in Figure 2, is not a replica of a steady ellipsoid; this confirms the 

asymmetric process of stock market return evolution. The reversibility of the 

logarithmic and differenced series of the index is examined using unit root tests based 

on Augmented Dickey-Fuller, Phillip-Perron, and Kwiatkowski-Phillips-Schmidt-Shin. 

For confirmation see Table 2 for the results of unit root tests. 

Table 2. Unit root test 

Test                        log of market index                                         Return on Market 

ADF                 -1.838134 (-3.410884)                                     -35.61496  (-2.862038) 

PP                     -1.765351(-3.410884)                                       -47.59493 (-2.862037) 

KPSS                 1.22695    (0.146000)                                         0.097132 (0.146000) 

Note the values in the parentheses are the 5% critical value  

Source: Authors’ Computation  

The test results in Table 2 revealed to us that the ADF and PP statistics appear 

smaller than the 5% critical value for the logarithmic series, but the statistics are greater 

in respect of the differenced series. The KPSS statistics are greater than the 5% critical 

value with the logarithmic series but smaller in term of the differenced series. Thus, the 

logarithmic stock index series is characterized with unit root and must be differenced. 

Further justification of this is demonstrated in Figures 3 and 4 (Appendix) respectively 

for the line graphs of logarithmic and differenced series. 

Figure 3 shows clearly a random walk process for greater parts of the distribution, 

while a reversible process is mostly represented in Figure 4. This suggests that stock 

return is mean reverting but raw prices are not. We now check if the variance of return 

is conditioned on time as shown in Figure 5 below: 

Figure 5 (Appendix) reveals that conditional variance is not constant (that is 1) 

but varies significantly with time, in which case there are low and high variances-

heterogeneous variance over range of time. To corroborate this, we conduct ARCH 

effects test at different lags. Table 3 reports the ARCH effects test. 

Table 3. ARCH effects test 

Test                                                     Value                                   Probability 

ARCH (2)                                          677.46                                    [0.0000] 

ARCH (5)                                          303.40                                    [0.0000] 

ARCH (10)                                        151.83                                    [0.0000] 

Source: Authors’ Computation  

 

It is really obvious in Table 3 that the series of return exhibits ARCH effects at 

lags 2, 5, and 10 respectively. The evidence of conditional heteroscedasticity 

demonstrated in Figure 5 is very resilient. We consider again if daily stock market 

returns are linearly dependent or nonlinearly dependent using BDS test. The result is 

displayed in Table 4. 

Table 4. BDS test result 

Dimension                  BDS-Stat                            Std-Error            Z-Stat                          P-value 

 2                  0.054019 0.001556  34.71724  0.0000 

 3                  0.091643 0.002471  37.08066  0.0000 

 4                  0.114047 0.002942  38.76267  0.0000 

 5                  0.123698 0.003066  40.34446  0.0000 

 6                  0.124560 0.002957  42.12998  0.0000 

Source: Authors’ computation  
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The BDS (Brook, Dechert & Scheinkman, 1987) test in Table 4 shows asymptotic 

Z statistics at every dimension (2 to 6) with zero probability. This confirms the presence 

of nonlinear dependency characterizing the daily stock market return in Nigeria. 

Though the BDS test has established short run autocorrelation, yet it is economically 

impossible for chartists to exploit this opportunity to make abnormal return in the short 

run (Chikhi, Peguin-Feissolle &Terraza, 2013). Hence, it is economically (but not 

statistically) wise to reject the hypothesis of autocorrelation. However, long run permits 

valid prediction because of wide dynamics of the horizon. Emphatically, we conduct a 

pre-test of long run cyclical tendency of return structure using Hurst-Mandelbrot and Lo 

rescale (R/S)  test. The statistics at three distict levels of confidence are reported in 

Table 5. 

Table 5. Hurst-Mandelbrot and Lo R/S Test 

Test                              Value                 C-Value    C-ValueC-Value 

                                                                @90%           @95%                              @99% 

Hurst-Mandelbrot     2.4786           [0.861, 1.747]    [0.809, 1.862]                [0.721, 2.098] 

Lo                             2.1745            [0.861, 1.747]    [0.809, 1.862]               [0.721, 2.098]  

Source: Authors’ Computation  

Both Hurst-Mandelbrot and Lo statistics are statistically significant. This leads to 

the rejection of no autocorrelation and long term structural dependence. We further 

confirm this by plotting the periodograms of return and volatility of return shown in 

Figures 6 and 7 (Appendix) respectively. 

A thorough sight view of Figures 6 and 7 indicates that the spectral density of 

return and volatility concentrate on low frequencies, and as the frequency tends towards 

zero, the density tends progressively to perpetuity. This is an approximated sign for long 

run autocorrelation. We verified this by exploring nonlinear models specifically, 

ARFIMA, GARCH, FIGARCH and HYGARCH. We first report the results of ARMA-

ARFIMA in Table 6.  

Table 6. ARMA-ARFIMA estimation results 

Parameter                             ARMA                                              ARFIMA 

a                                    0.010000(0.8795)                            0.010000 (0.9659) 

b                                   0.010000(0.8831)                             0.010000 (0.9666) 

d                                       -                                                    0.100000 (0.0000) 

Note: the results in Table 6 are estimated from equations 3.2 and 3.15 respectively with 

lag length p=1, q=1; the figure in parentheses are the p-values.  

Source: Authors’ Computation  

It is very clear in Table 6 that the ARMA parameters (a and b) are not significant, 

meaning that there is no significant ARMA structure characterizing the daily returns of 

Nigeria stock market. This implies that prediction of return is infeasible in the short run; 

speculators’ goal is futile because stock market returns in the short run are not 

connected. However, the long run parameter (d) as revealed by the ARFIMA is 

significant at 1 percent. This result has reinforced the Lo’s test in Table 5, earnestly 

suggesting that the stock market returns persist over long term range rather than short 

term range in Nigeria. By implication, our report shows that in the short term period, 

stock market return cannot be predicted; to the contrary, in the long run period return 

can be predicted in the Nigerian stock market. This means that our estimated results 

from the ARFIMA model do not complement the EMH, and thus, we have evidence 
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dully supported by Booth & Koutmos (1988) in European stock market. In addition, our 

evidence of long memory in return is in tandem with the findings of Watanaba (2002) in 

Tokyo Stock Exchange. To extend this investigation to volatility, GARCH, FIGARCH 

and HYGARCH are estimated and the results are shown in Table 7.  

Table 7. GARCH-FIGARCH-HYGARCH estimation results 

Parameter             GARCH                          FIGARCH                         HYGARCH 

                         0.077586 (0.0000)         0.070594(0.0000)                0.112699(0.0010) 

                         0.878862 (0.0000)         0.496672(0.0000)                0.380862(0.0000) 

d                                         -                      0.463569( 0.0000)              -0.370489(0.0000) 

 

Note: the results in Table 7 are estimated from equations 3.17, 3.22 and 3.23 

respectively with lag length p=1, q=1; the figure in parentheses are the p-values 

Source: Authors’ Computation  

Going by the results in Table 7, we have documented significant GARCH (1 1) 

process. The FIGARCH and HYGARCH parameters (including the long run parameter) 

are also significant. Therefore, our results uphold the presence of both short run and 

long run cyclical structure in volatility. In very simple terms, there is autocorrelation of 

volatility in short run and long run horizons, which makes prediction of volatility 

possible in Nigerian stock market. This deters EMH, by claiming that investors can 

employ historical information about volatility to forecast future volatility. This, thus fall 

within the evidences documented by David & Simonoysska (2015), Guinay (2014) and 

Balibey & Turkyilmaz (2014) that support our findings on long run volatility 

interdependency. More-also, our claim of ARFIMA-HYGARCH evidence in Nigerian 

stock market is supported by the study of Hongngoc (2014) in seven Asian countries. 

We conduct batteries of tests to evaluate the forecasting strength on the candidate 

models based on loss functions. The results are summarized in Tables 8 and 9. 

Table 8. Forecasting strength of ARMA-ARFIMA 

Test                                                             ARMA                            ARFIMA 

Mean Squared Error (MSE)                    0.0002616                         0.0001312  

 Median Squared Error (MSE)                0.0002033                        8.622e-005   

Mean Error (ME)                                       -0.01521                            -0.01002  

Mean Absolute Error (MAE)                      0.01521                             0.01002   

Root Mean Squared Error (RMSE)            0.01617                              0.01145   

Theil Inequality Coefficient (TIC)                  0.921                               0.9246 

Source: Authors’ Computation  

The loss function statistics are in favour of ARFIMA except in the case of TIC. In 

this regards we propose ARFIMA (1, 0.10, 1) model as a better forecasting model than 

ARMA (1, 1) in Nigerian stock market. Let us see Figures 8, 9, 10 and 11 (Appendix) 

for additional explanation. 

The conditional mean of shocks appears fairly constant and highly probably 

unvaried with time, truly white noised and random. Therefore, ARMA does not 

represent a good predictive model in Nigerian stock market. Clear distinctions between 

the ARMA and ARFIMA are that ARFIMA reveals connectivity between conditional 

mean of residual and return.  Again the conditional mean is time bound. In this regards 

we suggest that ARFIMA must be a better predictive model compared to ARMA. 
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Table 9. Forecasting Strength of GARCH-FIGARCH-HYGARCH 

Test                                                     GARCH             FIGARCH        HYGARCH            

Mean Squared Error (MSE)              2.668e-016           5.638e-016         5.236e-014 

Median Squared Error (MSE)           7.349e-017           4.562e-016         5.421e-014 

Mean Error (ME)                             -3.674e-009          -1.663e-008        -2.266e-007 

Mean Absolute Error (MAE)            1.217e-008           2.273e-008         2.266e-007 

Root Mean Squared Error (RMSE)  1.633e-008            2.374e-008        2.288e-007 

Theil Inequality Coefficient (TIC)          0.3739                   0.4183               0.8541 

Table 9 shows that FIGARCH is only selected by ME, while HYGARCH is 

favoured by all the tests except ME and TIC while GARCH is selected by TIC. 

HYGARCH has the most predictive power, and then followed by GARCH. FIGARCH 

lose out because of its weakness (see Davidson, 2004). The residuals and conditional 

variances of these models are presented in Figures 12, 13, 14, 15, 16 and 17 

(Appendix). 

Figure 12 provides an indication that shocks vary with time and Figure 13 shows 

that the conditional variance decays geometrically within the purview of a short run 

horizon. As shown in Figure 15, the FIGARCH conditional variance is the inverse of 

the GARCH conditional variance. Again it first decreases and increases with time, and 

disappears slowly on long time range. Figures 16 and 17 reveal that variance and shocks 

pool with tine on a long time range. It is practically overt that the conditional variance 

decays hyperbolically as shown in Figure 17. 

 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

We proposed family of ARMA and GARCH specifications to investigate whether 

stock return and volatility in Nigerian stock market exhibit short/long range cyclical 

structure. The results revealed short run memory-less in return. Thus, we conclude that 

in the short run the market does not have memory in return, and the possibility of 

correctly predicting returns is extreme. However, long run memory in return was not 

refuted, this gives an indication that in the long run the Nigerian stock market is 

inefficient, speculative activities and riskless abnormal returns are sustained 

simultaneously. In addition, we found that volatility is auto-correlated both in the short 

and long-run periods. In this regard, we conclude that there are effects of shocks on 

volatility in all market cycles, and the shocks disappear in the short run rapidly, while in 

the long run they decay slowly. Based on these two results, we conclude that in 

Nigerian stock market, there is single memory in return, but double memory in 

volatility. 

Recommendation 
The supervisory unit in the Nigerian stock market should initiate a more robust 

platform through which information can easily be disseminated to all participants in the 

market. This can be archived by introducing a policy of increasing market competition 

or relaxation of listing requirements to accommodate more companies to be quoted and 

sustain optimal spread of information. Finally, among the competing models, we 

recommend ARFIMA and HYGARCH as the best alternative models for forecasting in 

the Nigerian stock market. 
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APPENDIX 

 

 

Figure 1. Density plot of market return 

 

 

 

 

 
Figure 2. Scatter plot of market return 
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Figure 3.Line graph plot for log index         
 

 

 

 

 
Figure 4. Line graph plot for differenced index 
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Figure 5. Conditional variance of return 

 

 

 
Figure 6. Periodogram of return 

 

 
Figure 7. Periodogram of volatility 
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Figure 8. ARMA residual 

 

 

 

 
Figure 9. ARMA conditional mean 
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Figure 10. ARFIMA residual 

 

 

 
Figure 11. ARFIMA conditional mean 

 

 

 
Figure 12. Residual of GARCH                    
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Figure 13. Conditional variance of GARCH 

 

 

 
Figure 14. Residual of FIGARCH 

 

 

 

 
Figure 15. Conditional variance of FIGARCH 
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Figure16. Residual of HYGARCH 

 

 

 

 

 

 
Figure 17. Conditional variance of HYGARCH 

 

 

 

 

 

 

 

 
 

 

© 2020 by the authors. Licensee JPPD, Indonesia. This article is an open access 

article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license  (http://creativecommons.org/licenses/by/4.0/). 


