THE EFFECT OF FREQUENCY ON THE ELASTIC PROPERTIES OF MATERIALS
DOI:
https://doi.org/10.59052/edufisika.v9i2.36578Keywords:
Elastic Properties, Frequency, Ultrasonic Pulse-Echo TechniqueAbstract
The elastic properties measurement of materials is important to determine their potential application in industries. Hence, the effect of frequency on the elastic properties is crucial in estimating the material's behavior with the change of frequency. Thus, this study was conducted to determine the effect of frequency on the elastic properties of materials. Five parameters of elastic materials were found in this study: bulk modulus, shear modulus, longitudinal modulus, Young's modulus, and lame constant. The elastic properties of three samples; stainless steel, aluminium and PMMA were measured for 2.25 MHz, 5 MHz and 10 MHz frequency. The method used is non-destructive testing using pulse-echo ultrasound techniques. The findings indicated that the longitudinal modulus, Young's modulus, shear modulus, bulk modulus, and lame constant of all samples are constant as the frequency increased from 2.25 MHz to 10 MHz. In conclusion, the elastic properties of a material are independent to the change of frequency.
Downloads
References
Afifi, H. A. (2003). Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC. Polymer Plastics Technology and Engineering, 42(2), 193–205. https://doi.org/10.1081/PPT-120017922
Bergonzi, L., Vettori, M., & Pirondi, A. (2019). Development of a miniaturized specimen to perform uniaxial tensile tests on high performance materials. Procedia Structural Integrity, 24(2019), 213–224. https://doi.org/10.1016/j.prostr.2020.02.018
Bilici, V. O., & Kaya, E. (2022). Preparation and Characterization of Physico-Mechanical and Structural Properties of Phthalimide Derivative Polymeric Nanocomposites. Thermal Science, 26(4), 3055–3065. https://doi.org/10.2298/TSCI2204055O
Boccaccio, M., Rachiglia, P., Piero, G., Fierro, M., Pucillo, G. P., & Meo, M. (2021). Ultrasonic Imaging.
Braz, G. A., Baggio, A. L., Agnollitto, P. M., Grillo, F. W., Pavan, T. Z., Paula, F. J. A., Nogueira-Barbosa, M. H., Cardoso, G. C., & Carneiro, A. A. O. (2021). Tissue Characterization by Low-Frequency Acoustic Waves Generated by a Single High-Frequency Focused Ultrasound Beam. Ultrasound in Medicine and Biology, 47(2), 334–344. https://doi.org/10.1016/j.ultrasmedbio.2020.09.024
Bucciarelli, F., Malfense Fierro, G. P., Zarrelli, M., & Meo, M. (2019). A Non-Destructive Method for Evaluation of the Out of Plane Elastic Modulus of Porous and Composite Materials. Applied Composite Materials, 26(3), 871–896. https://doi.org/10.1007/s10443-018-9754-5
Carovac, A., Smajlovic, F., & Junuzovic, D. (2011). Application of Ultrasound in Medicine. Acta Informatica Medica, 19(3), 168. https://doi.org/10.5455/aim.2011.19.168-171
Chen, C., Hou, H., Su, M., Wang, S., Jiao, C., & Zhao, Z. (2023). Feasibility of Nonlinear Ultrasonic Method to Characterize the Aging Degree of Polyethylene Pipes. Journal of Materials Engineering and Performance, 32(12), 5514–5522. https://doi.org/10.1007/s11665-022-07496-8
Corradini, A., Cerni, G., D’Alessandro, A., & Ubertini, F. (2017). Improved understanding of grouted mixture fatigue behavior under indirect tensile test configuration. Construction and Building Materials, 155, 910–918. https://doi.org/10.1016/j.conbuildmat.2017.08.048
Dobrzanski, C. D., Gurevich, B., & Gor, G. Y. (2021). Elastic properties of confined fluids from molecular modeling to ultrasonic experiments on porous solids. Applied Physics Reviews, 8(2). https://doi.org/10.1063/5.0024114
Dorciak, F., Vasko, M., Handrik, M., Barnik, F., & Majko, J. (2019). Tensile test for specimen with different size and shape of inner structures created by 3D printing. Transportation Research Procedia, 40, 671–677. https://doi.org/10.1016/j.trpro.2019.07.095
EL-Wazery, M. S., EL-Elamy, M. I., & Zoalfakar, S. H. (2017). Mechanical properties of glass fiber reinforced polyester composites. International Journal of Applied Science and Engineering, 14(3), 121–131. https://doi.org/10.6703/IJASE.2017.14(3).121
Erol, A., Bilici, V. Ö., & Yönetken, A. (2022). Characterization of the elastic modulus of ceramic-metal composites with physical and mechanical properties by ultrasonic technique. Open Chemistry, 20, 593–601. https://doi.org/10.1515/chem-2022-0180
Fathoni, M. H., Pirngadi, H., & Rivai, M. (2013). Perancangan, pembuatan dan karakterisasi tranduser ultrasonik 3,5 MHz untuk pengujian bahan padat. J Teknik Pomits, 2(2), 306–311.
Fischer-Cripps, A. C. (2004). Materials data. The Physics Companion. https://doi.org/10.1887/0750309539/b1258b1
Franco, E. E., Meza, J. M., & Buiochi, F. (2011). Measurement of elastic properties of materials by the ultrasonic through-transmission technique medición de las propiedades elásticas de materiales por el método de transmisión ultrasónica. Dyna, 78(168), 59–64.
Fu, Z. F., Yang, Z. Y., Cheng, Q., Chen, H. P., Wang, B., & Zhou, J. P. (2021). First-principles investigation of the structural, elastic, anisotropic and electronic properties of Pmma-carbon. Molecular Physics, 119(3). https://doi.org/10.1080/00268976.2020.1809729
Greenwood, C., Clement, J. G., Dicken, A. J., Evans, J. P. O., Lyburn, I. D., Martin, R. M., Rogers, K. D., Stone, N., Adams, G., & Zioupos, P. (2015). The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue. Bone Reports, 3, 67–75. https://doi.org/10.1016/j.bonr.2015.10.001
Halimah, M. K., & Eevon, C. (2019). Comprehensive study on the effect of Gd 2 O 3 NPs on elastic properties of zinc borotellurite glass system using non-destructive ultrasonic technique. Journal of Non-Crystalline Solids, 511(January), 10–18. https://doi.org/10.1016/j.jnoncrysol.2019.01.033
Hossack, M., Fisher, R., Torella, F., Madine, J., Field, M., & Akhtar, R. (2022). Micromechanical and Ultrastructural Properties of Abdominal Aortic Aneurysms. Artery Research, 28(1), 15–30. https://doi.org/10.1007/s44200-022-00011-3
Ivanchev, I. (2022). Experimental determination of dynamic modulus of elasticity of concrete with ultrasonic pulse velocity method and ultrasonic pulse echo method. IOP Conference Series: Materials Science and Engineering, 1252(1), 012018. https://doi.org/10.1088/1757-899x/1252/1/012018
Jakovljevic, M., Hsieh, S., Ali, R., Chau, G., Kung, L., Hyun, D., Dahl, J. J., Jakovljevic, M., Hsieh, S., Ali, R., Chau, G., Kung, L., Hyun, D., & Dahl, J. J. (2018). approach Local speed of sound estimation in tissue using pulse-echo ultrasound: Model-based approach. Acoustical Society of America, 144(Jully). https://doi.org/10.1121/1.5043402
Jie, G., Yan, L., Mingfang, Z., Mingkun, L., Hongye, L., Bin, W., & Cunfu, H. (2021). Guided waves propagation in multi-layered porous materials by the global matrix method and Biot theory. Applied Acoustics, 184, 108356. https://doi.org/10.1016/j.apacoust.2021.108356
Jordan, J. L., Rowland, R. L., Greenhall, J., Moss, E. K., Huber, R. C., Willis, E. C., Hrubiak, R., Kenney-Benson, C., Bartram, B., & Sturtevant, B. T. (2021). Elastic properties of polyethylene from high pressure sound speed measurements. Polymer, 212, 123164. https://doi.org/10.1016/j.polymer.2020.123164
Judawisastra, H., Claudia, Sasmita, F., & Agung, T. P. (2019a). Elastic Modulus Determination of Thermoplastic Polymers with Pulse-Echo Method Ultrasonic Testing. IOP Conference Series: Materials Science and Engineering, 547, 012047. https://doi.org/10.1088/1757-899X/547/1/012047
Judawisastra, H., Claudia, Sasmita, F., & Agung, T. P. (2019b). Study of Elastic Modulus Determination of Polymenrs with Ultrasonic Method. International Journal on Advanced Science Engieering Information Technology, 547(3), 874–879. https://doi.org/10.1088/1757-899X/547/1/012047
Khatib, N., Ouacha, E. H., Faiz, B., Ezzaidi, M., & Banouni, H. (2019). Analysis of the attenuative behaviour of accelerated cement based materials through a series of ultrasound pulse echo measurements. Engineering Solid Mechanics, 7(2), 109–120. https://doi.org/10.5267/j.esm.2019.4.002
Lopez, A., Bacelar, R., Pires, I., Santos, T. G., Sousa, J. P., & Quintino, L. (2018). Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Additive Manufacturing, 21, 298–306. https://doi.org/10.1016/j.addma.2018.03.020
Messineo, M. G., Rus, G., Eliçabe, G. E., & Frontini, G. L. (2016). Layered material characterization using ultrasonic transmission. An inverse estimation methodology. Ultrasonics, 65, 315–328. https://doi.org/10.1016/j.ultras.2015.09.010
Mishra, R. R., & Sharma, A. K. (2016). On mechanism of in-situ microwave casting of aluminium alloy 7039 and cast microstructure. JMADE. https://doi.org/10.1016/j.matdes.2016.09.041
Nsengiyumva, W., Zhong, S., Lin, J., Zhang, Q., Zhong, J., & Huang, Y. (2021). Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Composite Structures, 256, 112951. https://doi.org/10.1016/j.compstruct.2020.112951
Oglat, A. A., Matjafri, M. Z., Suardi, N., Oqlat, M. A., Abdelrahman, M. A., Oqlat, A. A., & Abdalrheem, R. (2018). Measuring the Acoustical Properties of Fluids and Solid Materials Via Dealing with A-SCAN (GAMPT) Ultrasonic. Journal of Physics: Conference Series, 1083(1). https://doi.org/10.1088/1742-6596/1083/1/012053
Pabst, W., & Gregorová, E. (2014). Young’s modulus of isotropic porous materials with spheroidal pores. Journal of the European Ceramic Society, 34(13), 3195–3207. https://doi.org/10.1016/j.jeurceramsoc.2014.04.009
Phani, K. K. (2008). A novel method of predicting ultrasonic and elastic properties of isotropic ceramic materials after sintering from the properties of partially sintered or green compacts. Journal of the American Ceramic Society, 91(1), 215–222. https://doi.org/10.1111/j.1551-2916.2007.02146.x
Phillips, C., Kortschot, M., & Azhari, F. (2022). Towards standardizing the preparation of test specimens made with material extrusion: Review of current techniques for tensile testing. Additive Manufacturing, 58(July), 103050. https://doi.org/10.1016/j.addma.2022.103050
Puchi-Cabrera, E. S., Staia, M. H., & Iost, A. (2015). A description of the composite elastic modulus of multilayer coated systems. Thin Solid Films, 583, 177–193. https://doi.org/10.1016/j.tsf.2015.02.078
Qodir, F., & Putra, J. A. (2016). Tranduser Ultrasonik Sebagai Pendeteksi Gerak Pada Sistem Keamanan Rumah. Semesta Teknika, 8(1), 61–71. https://doi.org/10.18196/st.v8i1.913
Rajzer, I., Piekarczyk, W., & Castaño, O. (2016). An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement. Materials Science and Engineering C, 67, 20–25. https://doi.org/10.1016/j.msec.2016.04.083
Rose, J. L. (2014). Ultrasonic guided waves in solid media. Ultrasonic Guided Waves in Solid Media, 9781107048, 1–512. https://doi.org/10.1017/CBO9781107273610
Sanabria, S. J., Martini, K., Freystätter, G., Ruby, L., Goksel, O., Frauenfelder, T., & Rominger, M. B. (2019). Speed of sound ultrasound: a pilot study on a novel technique to identify sarcopenia in seniors. European Radiology, 29(1), 3–12. https://doi.org/10.1007/s00330-018-5742-2
Sigrist, R. M. S., Liau, J., Kaffas, A. El, Chammas, M. C., & Willmann, J. K. (2017). Ultrasound elastography: Review of techniques and clinical applications. Theranostics, 7(5), 1303–1329. https://doi.org/10.7150/thno.18650
Souri, D. (2017). Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses. Journal of Non-Crystalline Solids, 470(April), 112–121. https://doi.org/10.1016/j.jnoncrysol.2017.05.006
Thi, T., & Hoa, K. (2017). Determination Of Acoustic Properties Of PMMA Using Ultrasonic Through-Transmission Technique. Journal of Science and Technology, 4(11), 16–19.
Tomar, S., & Khurana, A. (2011). Transmission of longitudinal wave through micro-porous elastic solid interface. International Journal of Engineering, Science and Technology, 3(2). https://doi.org/10.4314/ijest.v3i2.68128
Trzepiecinski, T., Najm, S. M., Sbayti, M., Belhadjsalah, H., Szpunar, M., & Lemu, H. G. (2021). New advances and future possibilities in forming technology of hybrid metal–polymer composites used in aerospace applications. Journal of Composites Science, 5(8). https://doi.org/10.3390/jcs5080217
Tsuji, K., Norisuye, T., Nakanishi, H., & Tran-Cong-Miyata, Q. (2019). Simultaneous measurements of ultrasound attenuation, phase velocity, thickness, and density spectra of polymeric sheets. Ultrasonics, 99(July), 105974. https://doi.org/10.1016/j.ultras.2019.105974
Umiatin, U., Oktaviana, T., Wijaya, E., Riandini, R., & Yusuf, F. (2021). the Bone Microstructure Identification Model Based on Backscatter Mode of Ultrasound. Spektra: Jurnal Fisika Dan Aplikasinya, 6(1), 61–70. https://doi.org/10.21009/spektra.061.07
Wang, X. F., Han, R., Han, T. L., Han, N. X., & Xing, F. (2018). Determination of elastic properties of urea-formaldehyde microcapsules through nanoindentation based on the contact model and the shell deformation theory. Materials Chemistry and Physics, 215(February), 346–354. https://doi.org/10.1016/j.matchemphys.2018.05.041
Wells, P. N. T., & Liang, H. D. (2011). Medical ultrasound: Imaging of soft tissue strain and elasticity. Journal of the Royal Society Interface, 8(64), 1521–1549. https://doi.org/10.1098/rsif.2011.0054
Workman, G. L., & Kishoni, D. (2007). Nondestructive Testing Handbook (Third). American Society for Nondestructive Testing.
Wu, S. J., Chin, P. C., & Liu, H. (2019). Measurement of elastic properties of brittle materials by ultrasonic and indentation methods. Applied Sciences (Switzerland), 9(10). https://doi.org/10.3390/app9102067
Zhang, J., & Malzbender, J. (2015). Mechanical characterization of micro- and nano-porous alumina. Ceramics International, 1–5. https://doi.org/10.1016/j.ceramint.2015.05.007
Zheng, S., Zhang, S., Luo, Y., Xu, B., & Hao, W. (2021). Nondestructive analysis of debonding in composite/rubber/rubber structure using ultrasonic pulse-echo method. Nondestructive Testing and Evaluation, 36(5), 515–527. https://doi.org/10.1080/10589759.2020.1825707
Zou, Z., Hao, Y., Tian, F., Zheng, Y., He, W., Yang, L., & Li, L. (2020). An ultrasonic longitudinal through transmission method to measure the compressive internal stress in epoxy composite specimens of gas-insulated metal enclosed switchgear. Energies, 13(5). https://doi.org/10.3390/en13051248
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sri Maiyena, Shahrul Kadri Ayop, Anis Nazihah Mat Daud
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.