DETERMINATION OF THERMAL RADIATION EMISSION TO VARIOUS TYPES OF MATERIALS

Authors

  • Almahdi Mousa Bani Walid University
  • Sri Purwaningsih Universitas Jambi
  • Hikmah Ziarah Universitas Jambi
  • Ria Ambarwati Universitas Jambi
  • Romacos Fardela Universitas Andalas

DOI:

https://doi.org/10.59052/edufisika.v8i3.29625

Keywords:

Black Body, Cube, Thermal Radiation

Abstract

The research aims to measure and compare the amount of thermal radiation emitted by various materials with different colors and textures, and to calculate the emissivity of each material. Experiments were carried out using four surface variations of the cube. The results show that the black surface of the Leslie cube emitted the most thermal radiation, followed by the dull, shiny, and white surfaces. The average value of thermal radiation output for each surface was 3.4 mV for black material, 1.6 mV for white material, 2.4 mV for shiny colored materials, and 2.8 mV for dull colored materials. The amount of power obtained for each surface was 1.9 x 10-8 Watts, 0.87 x 10-8 Watts, 1.3 x 10-8 Watts, and 1.6 x 10-8 Watts, respectively. The emissivity of each material, which is the ratio of the thermal radiation emitted by the material to that of a black body at the same temperature, was 1, 0.458, 0.684, and 0.842, respectively. Based on the sensor output value, it can be concluded that black cloth is the most effective material in transmitting thermal radiation energy compared to glass, cardboard, and styrofoam. The research also provides empirical data and calculations of the thermal radiation and emissivity of different materials, which can be used for further analysis and applications. The research contributes to the literature on physics education and thermal radiation by demonstrating a practical and engaging way of teaching and learning the concept of thermal radiation using a Leslie cube.

Downloads

Download data is not yet available.

References

Ahmad, H., Javed, T., & Ghaffari, A. (2015). Radiation effect on mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder with constant heat flux, Journal of Applied Fluid Mechanics, 9(3), 1167-1174. http://dx.doi.org/10.18869/acadpub.jafm.68.228.24192

Bierman D M, (2016). Enhanced photovoltaic energy conversion using thermally based spectral shaping Nat. Energy 1 16068.

Kenneth, K. (2011), Modern Physics, 3rd ed, John Wiley & Sons, In.

Latifah, N. L., Zhafari, M. I., Tamunu, C. M., Padillah, R. M., & Bahar, N. K. (2018). Desain fasad bangunan terkait kenyamanan termal. Jurnal Arsitektur, 8(2), 33-44. https://dx.doi.org/10.36448/ja.v8i2.1102

Khan, Z., Jan, R., Jawad, M., Hussain, F. (2023). Radiation heat transfer of hybrid nanofluid stagnation point flow across a stretching porous cylinder, Thermal Science and Engineering, 6.(2), 1-15. http://dx.doi.org/10.24294/tse.v6i2.2595

Putra, F. A. (2018). Laporan Eksperimen Fisika Radiasi Termal. Diakses 18 Oktober 2022 dari https://pdfcoffee.com/laporan-eksperimen-fisika-radiasi-termal-pdf-free.html

Kats, M. A. (2013). Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance Phys. Rev. X 3 041004.

Planck, M. (1901). On the law of the energy distribution in the normal spectrum. Ann. Phys, 4(553), 1-11.

Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540-544. https://doi.org/10.1038/nature13883

Rami, R. A. M., Ramana, R. J. V., Sandeep, N., & Sugunammam, V. (2017). Effect of Nonlinear Thermal Radiation on MHD Chemically Reacting Maxwell Fluid Flow Past a Linearly Stretching Shee, Applications and Applied Mathematics: An International Journal (AAM), 12(1), 259-274. http://dx.doi.org/10.1080/01430750.2022.2097947

Rey, G. C. (2006), Numerical methods for radiative heat transfer, Departament de M`aquines i Motors T`ermics E.T.S.E.I.T. Universitat Polit`ecnica de Catalunya.

Shahsafi, A., Roney, P., Zhou, Y., Zhang, Z., Xiao, Y., Wan, C., ... & Kats, M. A. (2019). Temperature-independent thermal radiation. Proceedings of the National Academy of Sciences, 116(52), 26402-26406. https://doi.org/10.1073/pnas.1911244116

Shabrina, N. H., & Samuel, S. (2018). Analisis pola radiasi antena dipole pada aplikasi wireless sensor networks di industrial site. Ultima Computing: Jurnal Sistem Komputer, 10(2), 47-52. https://doi.org/10.31937/sk.v10i2.929

Siegel, R., and Howell, J. R., 2001, Thermal Radiation Heat Transfer, 4th ed. Taylor & Francis, New York.

Siegel, R., & Howell, J. R. (1971). Thermal Radiation Heat Transfer: Radiation transfer with absorbing, emitting, and scattering media (Vol. 164). Scientific and Technical Information Division, National Aeronautics and Space Administration.

Sudiarta, I, W. (2019). Mekanika Kuantum. Cv Garuda Limi : Mataram

Udoetok, E. S. (2016). Thermal Radiation Of A Hot Body Of Gas, Frontiers in Heat and Mass Transfer, 7(39), 1-5. http://dx.doi.org/10.5098/hmt.7.39

Downloads

Published

2023-12-02

How to Cite

Mousa, A., Purwaningsih, S., Ziarah, H., Ambarwati, R., & Fardela, R. (2023). DETERMINATION OF THERMAL RADIATION EMISSION TO VARIOUS TYPES OF MATERIALS. EduFisika: Jurnal Pendidikan Fisika, 8(3), 336-343. https://doi.org/10.59052/edufisika.v8i3.29625