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Abstract :  

The elastic properties measurement of materials is important to 

determine their potential application in industries. Hence, the effect of 

frequency on the elastic properties is crucial in estimating the material's 

behavior with the change of frequency. Thus, this study was conducted 

to determine the effect of frequency on the elastic properties of 

materials. Five parameters of elastic materials were found in this study: 

bulk modulus, shear modulus, longitudinal modulus, Young's modulus, 

and lame constant. The elastic properties of three samples; stainless 

steel, aluminium and PMMA were measured for 2.25 MHz, 5 MHz and 

10 MHz frequency. The method used is non-destructive testing using 

pulse-echo ultrasound techniques. The findings indicated that the 

longitudinal modulus, Young's modulus, shear modulus, bulk modulus, 

and lame constant of all samples are constant as the frequency 

increased from 2.25 MHz to 10 MHz. In conclusion, the elastic 

properties of a material are independent to the change of frequency.   
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INTRODUCTION 

The elastic properties of a material refer to its ability to regain their original shape and size after 

deforming force is removed. Hence, the elastic properties measurement is important to predict the 

engineering behavior of materials (Boccaccio et al., 2021; Braz et al., 2021; Pabst & Gregorová, 2014). 

The elastic properties of materials can be determined using destructive testing (Lopez et al., 2018; 

Messineo et al., 2016; Nsengiyumva et al., 2021; Puchi-Cabrera et al., 2015; Wells & Liang, 2011) and 

non-destructive testing (Boccaccio et al., 2021). The destructive testing such as tensile tests (Bergonzi 

et al., 2019; Corradini et al., 2017; Dorčiak et al., 2019; Phillips et al., 2022) , compression tests 

(Trzepieciński et al., 2021; Wang et al., 2018; Zou et al., 2020) ,hardness tests (Mishra & Sharma, 2016; 

Souri, 2017; Wang et al., 2018; Zhang & Malzbender, 2015) and impact tests (EL-Wazery et al., 2017) 

offers the accurate results but resulting in damage to the material being tested (Hossack et al., 2022). 

Hence, previous researchers utilised the non-destructive testing especially ultrasonic testing (Bilici & 

Kaya, 2022; Erol et al., 2022; Judawisastra et al., 2019b; Souri, 2017) as an alternative to measure the 

elastic properties of materials. 

Ultrasonic testing is the nondestructive testing that uses sound waves with frequencies beyond 

the human hearing limit (Carovac et al., 2011). Previous researchers measured the elastic properties of 
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materials using two common techniques of ultrasonic testing; through transmission technique (TT) 

(Franco et al., 2011; Messineo et al., 2016; Sanabria et al., 2019; Tomar & Khurana, 2011; Umiatin et 

al., 2021; Zou et al., 2020) and pulse-echo technique (PET) (Bucciarelli et al., 2019; Dobrzanski et al., 

2021; Ivanchev, 2022; Jakovljevic et al., 2018; Jordan et al., 2021; Judawisastra et al., 2019a; Wu et al., 

2019; Zheng et al., 2021). In 2022, Oral and Ekrem investigated the elastic properties of epoxy 

resin/polyvinyl alcohol nanocomposites using the PET. However, they only calculated the Young's 

modulus, Poisson ratio and shear modulus from the measurement of longitudinal and shear velocities. 

In addition, they did not studied the effect of frequency on the elastic properties of epoxy resin/polyvinyl 

alcohol nanocomposites.  

The need for more information on how frequency affects a material's elastic characteristics is 

the study's research gap. The majority of earlier research has been on computing the values of elastic 

characteristics of materials, which are found through longitudinal and shear velocities, such as Young's 

modulus, Poison ratio, and shear modulus. Investigating the relationship between the elastic 

characteristics of the material and the modification of the transducer frequency is, therefore, crucial.  

When comprehending and creating a material, the elastic characteristics of the material are crucial 

factors to consider (Braz et al., 2021). 

The novelty of this study lies in the approach taken to explore the effect of ultrasonic transducer 

frequency on the elastic properties of materials, which has not been widely explored in previous studies. 

Although ultrasonic testing techniques, especially through the pulse-echo technique, have been used to 

measure the elastic properties of materials, this study broadens the understanding by analyzing the 

variation of five elastic properties of longitudinal modulus (L), Young's modulus (E), shear modulus 

(G), bulk modulus (K), and Lame's constant (λ) at three different frequencies (2.5 MHz, 5 MHz, and 10 

MHz). Previously, most studies have only focused on measuring Young's modulus, Poisson's ratio, and 

shear modulus without considering the impact of frequency changes on these elastic properties. This 

study introduces a new dimension in understanding the stability of elastic properties of materials with 

frequency variations, which is an important contribution to the fields of materials science and non-

destructive engineering (Oral & Ekrem, 2022). 

Therefore, this study was performed to investigate the effect of frequency on the elastic 

properties of materials using the PET. The variations of five elastic properties (Workman & Kishoni, 

2007); longitudinal modulus, L, Young's modulus, E, shear modulus, G, bulk modulus, K, and lame 

constant, λ, of stainless steel, aluminium and PMMA (polymethyl methacrylate) with frequency were 

determined from the single measurement of the longitudinal velocity. The elastic properties of samples 

were determined at three different frequencies; 2.5 MHz, 5 MHz and 10 MHz. 

 

RESEARCH METHOD 

Sample  

This study involves three samples; stainless steel, aluminium and PMMA. The dimensions for 

each sample are (10.00 × 5.00 × 𝑑) cm3 where d is the thickness of the sample. Table 1 summarizes 

the thickness, density and Poisson ratio for each sample. 

 

Table 1. The thickness, density and Poisson ratio for stainless steel, aluminium and PMMA. 

Material 
Thickness, 

d (cm) 

Density, 

ρ (kg m-3) 

Poisson ratio, 

υ 

Stainless steel 2.5 7750 0.30* 

Aluminium 2.0 2710 0.33** 

PMMA 1.5 1180 0.34*** 

*(Fischer-Cripps, 2004) 

**(Fischer-Cripps, 2004) 

***(Afifi, 2003) 
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Experimental Setup 

Figure 1 shows the experimental setup for the elastic properties measurement of materials using the 

PET. An electric pulse was generated by a pulser/receiver generator (Olympus Panametric NDT model 

5072PR) and converted to in to the mechanical energy to create an ultrasonic pulse by a transducer 

(Olympus Panametric NDT) (Greenwood et al., 2015; Khatib et al., 2019; Thi & Hoa, 2017). The 

ultrasonic pulse was transmitted in the sample and reflected into its original path at the back interface 

of the sample (Chen et al., 2023; Qodir & Putra, 2016). The reflected pulse was detected and converted 

into the electrical signal by the transducer (Fathoni et al., 2013; Oglat et al., 2018). The pulser/receiver 

generator amplified and conditioned the signal and the digital oscilloscope (LeCroy Wave Surfer 42 

MXs-B 400MHz 5GS/s) displayed the signal. Three transducers with different center of frequencies 

were employed for this study; 2.5 MHz, 5 MHz and 10 MHz.  

 

 

Figure 1. Experimental setup for elastic properties measurement of materials 

 

Elastic Properties 

This study involves the measurement of five elastic properties of a material (Sigrist et al., 2017); 

L, 𝐸, 𝐺, K, and λ. The values of 𝐿, 𝐸, 𝐺, K, and λ of a material are calculated from its density, 𝜌, 

longitudinal velocity, 𝑣𝑙, and Poisson ratio, υ using equation 1 (Halimah & Eevon, 2019), equation 2 

(Halimah & Eevon, 2019; Judawisastra et al., 2019a), equation 3 (Halimah & Eevon, 2019; Jordan et 

al., 2021), equation 4 (Fu et al., 2021; Halimah & Eevon, 2019) and equation 5 (Jie et al., 2021; Rose, 

2014; Tsuji et al., 2019) 

𝐿 = 𝜌𝑣𝑙
2  (1) 

𝐸 =
𝐿 (1+ν)(1−2ν)

1−ν
   (2) 

𝐺 =
𝐸

2(1+𝜈)
      (3) 

𝐾 =
𝐸

3(1−2𝜈)
    (4) 

𝜆 = 𝐿 − 2𝐺      (5) 

 

Where its longitudinal velocity, 𝑣𝑙, is calculated from the time of the first reflected pulse at the back 

interface, 𝑡1, the time of the second reflected pulse at the back interface, 𝑡2, and its thickness, d, using 

equation 6 (Phani, 2008; Rajzer et al., 2016) . 

 

𝒗𝑳𝟏 =
𝟐𝒅

𝒕𝟐−𝒕𝟏
  (6) 

 

 

SAMPLE 

TRANSDUCER 

DIGITAL 

OSCILLOSCOPE 

PULSER/RECEIVER 

GENERATOR 
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RESULTS AND DISCUSSION 

Table 2 shows the elastic properties of stainless steel, aluminium and PMMA at 2.25 MHz, 5.00 

MHz and 10 MHz. According to Table 2, the values of 𝐿, 𝐸, 𝐺, K, and λ of stainless steel were consistent 

within the range of 262.69 GPa to 270.87 GPa, 195.14 GPa to 201.22 GPa, 75.05 GPa to 77.39 GPa, 

162.61 GPa to 167.68 GPa and 112.58 GPa to 116.08 GPa, respectively even the frequency was 

increased from 2.25MHz to 10 MHz. The values of 𝐿, 𝐸, 𝐺, K, and λ of aluminium and PMMA also 

show the similar trend with the change of frequency. It indicated that the elastic properties of materials 

are independent to the change of frequency.  

 

Table 2 also shows that the stainless steel has the highest values of 𝐿, 𝐸, 𝐺, K, and λ, followed by 

aluminium and PMMA. It implies that the elastic properties of materials depends on its density. 

Molecules in denser materials are closer together than molecules in less dense materials (Duck, 1990). 

The shorter separation distance between molecules in the material causes a higher resistance for 

materials to deform. Hence, the denser material has higher elastic properties compared to the less dense 

material. 

 

Table 2. The elastic properties of stainless steel, aluminium and PMMA at 2.25 MHz, 5.00 MHz and 

10 MHz. 

Material Elastic Properties 
Frequency, f (MHz) 

2.25 5 10 

Stainless steel 

L (GPa) 267.67 270.87 262.69 

E (GPa) 198.84 201.22 195.14 

G (GPa) 76.47 77.39 75.05 

K (GPa) 165.70 167.68 162.61 

𝜆 (GPa) 114.71 116.08 112.58 

Aluminium 

L (GPa) 115.59 107.15 104.94 

E (GPa) 78.01 72.31 70.83 

G (GPa) 29.32 27.18 26.62 

K (GPa) 76.48 70.90 69.44 

𝜆 (GPa) 56.93 52.77 51.69 

PMMA 

L (GPa) 8.91 9.04 8.69 

E (GPa) 5.79 5.87 5.64 

G (GPa) 2.16 2.19 2.10 

K (GPa) 6.03 6.11 5.88 

𝜆 (GPa) 4.59 4.65 4.47 

 

The novelty of this study is to determine the effect of transducer frequency variations on the 

elastic properties of materials using non-destructive techniques with the pulse-echo ultrasound method. 

This study also provides empirical evidence that the elastic properties of a material will be different 

from other materials. This study contributes to the literature on physical materials, which can facilitate 

understanding the price of a material so that it will be easier to design the material. The limitations of 

this study are that only five elastic properties have been determined, and elastic properties such as tensile 

modulus and flexural modulus have yet to be determined. This study also does not use the position ratio 

value obtained through experiments. Future research can expand the scope of the study to include more 

variations in material properties against various variations in the transducer frequency used, variations 

in sample thickness and variations in the ultrasound technique used. In acoustic properties, the frequency 

transducer affects the attenuation coefficient value. The attenuation coefficient increases with increasing 

frequency used. 

Previous research conducted by Adhikari et al. (2021) has successfully developed a 

comprehensive analytical framework to determine the dynamic elastic modulus of lattice materials under 

steady-state vibration conditions. However, the main gap that emerged between previous research and 

the current research is the focus on the elastic properties of the material in the context of vibration 

frequency. The current research focuses on the effect of ultrasonic transducer frequency on the elastic 

properties of materials such as stainless steel, aluminum, and PMMA using non-destructive techniques. 
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Unlike previous research that studied the behavior of materials under dynamic vibration conditions and 

involved microstructures at the lattice scale, the current research explores how changes in transducer 

frequency do not affect the elastic properties of materials macroscopically in a certain frequency range 

(2.25 MHz to 10 MHz). 

This study has significant implications in the field of materials science and industrial 

applications involving the evaluation of elastic properties of materials. The finding that elastic properties 

such as Young's modulus (E), shear modulus (G), bulk modulus (K), and Lame's modulus (λ) are not 

affected by the variation of the transducer frequency in the range of 2.25 MHz to 10 MHz provides 

confidence in the stability of the elastic properties of the material across a wide range of operating 

conditions. This allows engineers to select and design materials without worrying about changes in 

elastic properties due to frequency variations, thereby increasing efficiency and reducing production 

costs. In addition, the validation of the use of the pulse-echo ultrasound technique as a non-destructive 

method for measuring elastic properties of materials strengthens the application of this technique in 

industrial material inspection. This study also opens up opportunities for the development of further 

studies that expand the testing to other material property variations and more comprehensive evaluation 

techniques. 

CONCLUSION 

The effect of frequency on the elastic properties of materials were successfully determined in 

this study. The findings shows that the 𝐿, 𝐸, 𝐺, K, and λ of materials are independent to the change of 

frequency. In contrast, the 𝐿, 𝐸, 𝐺, K, and λ of materials are increased with their density. Therefore, a 

further study is required to determine other factors which could affect the elastic properties of materials. 

Based on the findings of this study, it is recommended that further research explore other factors that 

may influence the elastic properties of materials other than density and frequency. 
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